
A Computational Theory of Metaphor 

James H. Martin 
Copyright© 1988 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 1988 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1988 to 00-00-1988  

4. TITLE AND SUBTITLE 
A Computational Theory of Metaphor 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 



14. ABSTRACT 
Metaphor is a conventional and ordinary part of language. A theory attempting to explain metaphor must
account for the ease with which conventional metaphors are understood, and with the ability to understand
novel metaphors as they are encountered. An approach to metaphor, based on the explicit representation
of knowledge about metaphors, has been developed to address these issues. This approach asserts that the
interpretation of conventional metaphoric language should proceed through the direct application of
specific knowledge about the metaphors in the language. Correspondingly, the interpretation of novel
metaphors can be accomplished through the systematic extension, elaboration, and combination of
knowledge about already well-understood metaphors. MIDAS (Metaphor Interpretation, Denotation and
Acquisition System) is a computer program that embodies this approach. MIDAS can be used to perform
the following tasks: represent knowledge about conventional metaphors, interpret metaphoric language by
applying this knowledge, and dynamically learn new metaphors as they are encountered during normal
processing. Knowledge about conventional metaphors is represented in the form of coherent sets of
associations between disparate conceptual domains. The representation captures both the details of
individual metaphors, and the systematicities exhibited by the set of metaphors in the language as a whole.
These systematic sets of associations were implemented using the KODIAK knowledge representation
language. MIDAS is capable of using this metaphoric knowledge to interpret conventional metaphoric
language. The main thrust of this approach is that normal processing of metaphoric language proceeds
through the direct application of specific knowledge about the metaphors in the language. This approach
gives equal status to all conventional metaphoric and literal interpretations. Moreover, the mechanisms
used to arrive at metaphoric and literal interpretations are fundamentally the same. When a metaphor is
encountered for which MIDAS has no applicable knowledge, MIDAS calls upon its learning component -
the Metaphor Extension System (MES). The approach embodied in the MES asserts that a novel metaphor
can best be understood through the systematic extension of an already well-understood metaphor. MIDAS
has been integrated as a part of the UNIX Consultant system. UC is a natural language consultant system
that provides naive computer users with advice on how to use the UNIX operating system. By calling upon
MIDAS, UC can successfully interpret and learn conventional UNIX domain metaphors, as they are
encountered during the course of UC’s normal processing. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

224 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 





A Computational Theory of Metaphor 

James H. Martin 

ABSTRACT 

Metaphor is a conventional and ordinary part of language. A theory attempting to 

explain metaphor must account for the ease with which conventional metaphors are 

understood, and with the ability to understand novel metaphors as they are encountered. 

An approach to metaphor, based on the explicit representation of knowledge about meta­

phors, has been developed to address these issues. This approach asserts that the interpre­

tation of conventional metaphoric language should proceed through the direct application 

of specific knowledge about the metaphors in the language. Correspondingly, the 

interpretation of novel metaphors can be accomplished through the systematic extension, 

elaboration, and combination of knowledge about already well-understood metaphors. 

MIDAS (Metaphor Interpretation, Denotation, and Acquisition System) is a com­

puter program that embodies this approach. MIDAS can be used to perform the following 

tasks: represent knowledge about conventional metaphors, interpret metaphoric language 

by applying this knowledge, and dynamically learn new metaphors as they are encoun­

tered during normal processing. 

Knowledge about conventional metaphors is represented in the form of coherent sets 

of associations between disparate conceptual domains. The representation captures both 

the details of individual metaphors, and the systematicities exhibited by the set of meta­

phors in the language as a whole. These systematic sets of associations were imple­

mented using the KODIAK knowledge representation language. 

MIDAS is capable of using this metaphoric knowledge to interpret conventional 

metaphoric language. The main thrust of this approach is that normal processing of 

metaphoric language proceeds through the direct application of specific knowledge about 

the metaphors in the language. This approach gives equal status to all conventional 

metaphoric and literal interpretations. Moreover, the mechanisms used to arrive at meta­

phoric and literal interpretations are fundamentally the same. 

When a metaphor is encountered for which MIDAS has no applicable knowledge, 

MIDAS calls upon its learning component - the Metaphor Extension System (MES). The 

approach embodied in the MES asserts that a novel metaphor can best be understood 

through the systematic extension of an already well-understood metaphor. 

MIDAS has been integrated as a part of the UNIX Consultant system. UC is a 

natural language consultant system that provides naive computer users with advice on 

how to use the UNIX operating system. By calling upon MIDAS, UC can successfully 

interpret and learn conventional UNIX domain metaphors, as they are encountered dur­

ing the course of UC's normal processing. 

- l -





Acknowledgements 

I'd like to thank my advisor, Robert Wilensky, who diligently read all the drafts of 

this thesis. My long discussions with him resulted in many of the ideas in this thesis. I'd 

also like thank the other members of my thesis committee: Lotfi Zadeh and Paul Kay. 

Berkeley is an amazing place to do language research. This is due in large part to 

the presence of Charles Fillmore, Paul Kay, and George Lakoff. I'd like to thank 

George, in particular, for opening the door for this kind of research. 

Richard Alterman's unbridled enthusiasm and interest in my research came at a 

critical time in my graduate career. Peter Norvig put up with my incessant questions 

about how to do research and how to write a thesis. I'd like to thank Paul Jacobs for 

being the first one to show that it really could be done. Marc Luria and Jim Mayfield 

shared the various horrors of prelims, quais, and learning to do research. They were 

good companions on this long strange trip. 

Over the last few years my office-mates have certainly made 545 Evans an interest­

ing place to be. I'd like to thank Michael Braverman for all the stories that I thought 

would never end. Michael also served as an excellent reference for the latest in Machine 

Learning. The effects of Dan Jurafsky's seemingly endless supply of energy and 

enthusiasm cannot be overestimated. He also patiently answered all my naive linguistic 

questions. I'd like to thank Nigel Ward for the tuna and Dekai Wu for the daily fashion 

show. Over the years the following members of the Berkeley AI research group contri­

buted to the ideas in this thesis, and were fun to have around: Yigal Arens, Joe Falletti, 

David Chin, Lisa Rau, Margaret Butler, Charles Cox, Terry Regier, Eric Karlson, and 

Anthony Albert. Sharon Tague has provided invaluable administrative support, in addi­

tion to keeping things interesting. 

Quite a number of people contributed to the length, and occasionally to the quality, 

of my stay in Berkeley. I'd like to thank (in order of appearance): James Campbell, Tim 

Learmont, Margaret Butler, Yvonne Freund, and Aimee Fishkind. Leaving Berkeley 

would have been much harder if these people hadn't all fled first. Sandy Irani provided a 

welcome and necessary distraction over the last year while I wrote this beast. I'd also 

like to thank Andrew Romanowski and Cecelia Buchanan for their long-distance and 

long-term support. 

My parents gave me their complete love and support throughout my graduate 

career. I can't possibly thank them enough for all they've done for me. 

Finally I'd like to thank the taxpayers for providing the support for this work, which 

was administered through: the Defense Advanced Research Projects Agency (DoD), 

monitored by the Space and Naval Warfare Systems Command under Contracts 

N00039-84-C-0089 and N00039-88-C-0292; the Office of Naval Research, under grant 

N00014-80-C-0732. Additional support was provided by a GTE Laboratories Fellowship. 

- ii -





Contents 

1 Introduction............................................................................................................. 1 
1.1. Conventional Metaphor ................................................................................... 1 
1.2. The Metaphoric Knowledge Approach........................................................... 2 
1.3. Details of the Approach.................................................................................. 5 

1. 3 .1. Representation.................................................................................... 5 
1.3.2. Interpretation...................................................................................... 6 
1.3.3. Learning............................................................................................. 10 

1.4. Summary......................................................................................................... 18 

2 Related Research..................................................................................................... 19 
2.1. Knowledge-Deficient Approaches................................................................. 19 

2.1.1. Natural Language Processing Approaches ....................... ................ 20 
2.1.1.1. Wilks..................................................................................... 20 
2.1.1.2. Fass........................................................................................ 22 
2.1.1.3. Russell................................................................................... 23 

2.1.2. Analogical Approaches..................................................................... 24 
2.1.2.1. Winston and Carbonell ........................... .... .... ........ ........ .. .. .. 25 
2.1.2.2. Gentner.................................................................................. 25 
2.1.2.3. Greiner and Burstein............................................................. 26 

2.2. Knowledge-Based Approaches...................................................................... 27 
2.4. Word Sense Acquisition................................................................................. 29 

3 Conventional Metaphoric Knowledge................................................................... 30 
3.1. Introduction.................................................................................................... 30 
3.2. Conventional Metaphorical Meaning ............................................................ 30 
3.3. Extended Metaphors...................................................................................... 31 

3.3.1. Core Structures.................................................................................. 32 
3.3.2. Metaphor and Core Structures.......................................................... 34 
3.3.3. Structure of Extended Metaphors..................................................... 35 
3.3.4. Representational Requirements of Extended Metaphors.................. 39 

3.4. Metaphor Hierarchies..................................................................................... 40 
3.5. Similarity Among Metaphors........................................................................ 41 
3.6. Challenges to Metaphorical Regularity......................................................... 43 
3.7. Motivation...................................................................................................... 45 
3.8. Summary........................................................................................................ 45 

- lll -



4 Knowledge Representation..................................................................................... 47 

4.1. Introduction.................................................................................................... 4 7 

4.2. KODIAK........................................................................................................ 47 

4.2.1. Structured Associations..................................................................... 51 

4.3. Conventional Metaphorical Knowledge........................................................ 52 

4.4. Representing Conventional Metaphors.......................................................... 54 

4.5. Representing Extended Metaphors................................................................ 56 

4.5.1. Core Structures..................................................................................... 58 

4.5.2. Metaphorical Preservation of Core Structures..................................... 60 

4.5.3. Extended Metaphors ............................................................................ 63 

4.6. Metaphor Hierarchies..................................................................................... 67 

4. 7. Metaphorical Interactions .... ...... ............ .............. .. ........ .. .. .. .... .. .................... 70 

4.8. Summary........................................................................................................ 74 

5 Metaphoric Interpretation..................................................................................... 75 

5.1. Introduction.................................................................................................... 75 

5.2. Conceptual Analysis ...................................................................................... 7 5 

5.2.1. Initial Parse....................................................................................... 76 

5 .2.2. Interpretation..................................................................................... 77 

5.3. Interpretation Algorithm................................................................................ 80 

5.4. Summary........................................................................................................ 93 

6 Overview of Metaphor Extension.......................................................................... 94 

6.1. Introduction.................................................................................................... 94 

6.2. The Learning Approach ... ........................ ........ .... .............. .... .. .. .. .............. .... 94 

6.3. Context........................................................................................................... 95 

6.4. The Extension Approach................................................................................ 95 

6.4.1. Similarity Learning........................................................................... 96 

6.4.2. Core Extensions................................................................................ 101 

6.5. The Extension Algorithm............................................................................... 106 

6.6. Annotated Example........................................................................................ 107 

6.7. Summary........................................................................................................ 11::: 

7 The Metaphor Extension System........................................................................... 114 

7 .1. Introduction.................................................................................................... 114 

7.2. TheMES Algorithm....................................................................................... 114 

7.2.1. Step 0: Initial Processing ........................................................ :......... 115 

7.2.2. Step 1: Characterize The New Input................................................. 116 

7 .2.3. Step 2: Collecting Relevant Metaphors ............................................ 117 

7 .2.4. Step 3: Evaluating the Candidates .. .. .. ................ ...... ............ ............ 119 

7 .2.5. Step 4: Applying the Candidate Metaphor........................................ 123 

7.2.6. Step 5: Storing the New Metaphor.................................................... 125 

7.3. Summary........................................................................................................ 127 

- iv-



8 Learning Metaphors by Using Similarity............................................................. 128 

8.1. Introduction.................................................................................................... 128 

8.2. An Example.................................................................................................... 129 

8.3. Similarity Algorithm...................................................................................... 134 
8.3.1. Step 0: Accept................................................................................... 135 
8.3.2. Step 1: Assign Roles......................................................................... 137 
8.3.3. Step 2: Abstraction............................................................................ 138 

8.3.4. Step 3: Concretion............................................................................. 140 

8.4. Degrees of Similarity..................................................................................... 142 
8.5. Summary........................................................................................................ 145 

9 Learning Extended Metaphors.............................................................................. 146 

9 .1. Introduction.................................................................................................... 146 

9 .1.1. Core Extension Algorithm . . .. .............. ........ .. .. .. .. .. .. .. .. .... .... .. .. .. .... .. .. 14 7 
9 .1.2. Direct Extension................................................................................ 151 

9.1.2.1. Step 0: Accept.................................................................... 151 
9.1.2.2. Step 1: Characterization..................................................... 152 
9.1.2.3. Step 2: Application............................................................ 154 
9.1.2.4. Step 3: Concretion.............................................................. 156 

9.1.3. Realization........................................................................................ 157 
9 .1.4. Intermediate Extension ..................................................................... 160 

9 .2. Relation to Analogy . .......... .. ........ .. .. .... .... .. .. .... .... .. .. .... .. .. .... .. .... .... .. .. .. .. .. .. .. .. 162 

9.3. Summary........................................................................................................ 162 

10 Previous Literature Revisited............................................................................... 163 

10.1. Introduction................................................................................................... 163 

1 0.2. Hobbs ...... .. .... .. ...... .. .............. .. .... .... .......... .. ................ .............. .......... .. ........ 164 

10.3. Wilks............................................................................................................. 169 

10.4. DeJong and Waltz......................................................................................... 172 

10.5. Fass................................................................................................................ 176 

10.6. Russell........................................................................................................... 178 

10.7. Summary....................................................................................................... 183 

11 Conclusions.............................................................................................................. 184 

11.1. Introduction.................................................................................................. 184 

11.2. Representation.............................................................................................. 184 

11.3. Interpretation ......................................................................... :...................... 185 
11.3.1. Word-Senses Versus Conventional Metaphors............................. 185 

11.4. Learning ....................................................................................................... 187 
11.5. Problems....................................................................................................... 187 

Appendix A UNIX Examples ............................................................. ............................ 189 

A.1. Introduction.................................................................................................. 189 

A.2. Examples...................................................................................................... 189 

Appendix B Implementation Status ............................ .......................... ................ ........ 208 

B.1. Introduction.................................................................................................. 208 

- v-



B.2. KODIAK...................................................................................................... 208 
B.3. Statistics........................................................................................................ 209 

References........................................................................................................................ 211 

-VI-



Chapter 1 

Introduction 

1.1. Conventional Metaphor 

This thesis addresses the problem of understanding conventional metaphoric 

language. Consider the following examples. 

(1) How can I kill a process? 
(2) How can I get into Lisp? 
(3) You can enter Emacs by typing 'emacs' to the shell. 
(4) Nili gave Marc her cold. 
(5) Inflation is eating up our savings. 

The italicized words in each of these examples are being used to metaphorically 

refer to concepts that are quite distinct from those that might be considered the normal 

meanings of the words. Consider the use of enter in (3). Enter is being used, in this 

example, to refer to the actions on a computer system that result in the activation of a 

program. This use is clearly different from what might be called the ordinary or basic 

meaning of the word that has to do with the actions that result in an agent entering an 

enclosure. 

While the word enter is used metaphorically in (3), this metaphor is neither novel 

nor poetic. Instead, the metaphorical use of enter results from a conventional systematic 

conceptual metaphor that allows computer processes to be viewed as enclosures. The 

various actions and states that have to do with containmt!nt are used to refer to actions 

and states that have to do with the activation, deactivation, and use of these computer 

processes. This conceptual metaphor, structuring processes as enclosures, underlies the 

normal conventional way of speaking about these processes. Therefore, the uses of the 

words enter in (3) and get into in (2) are ordinary conventional ways of expressing these 

concepts that nevertheless involve a metaphor. 

- 1 -



1.2. The Metaphoric Knowledge Approach 

The main thrust of my approach to metaphor is that the· interpretation of conven­

tional metaphoric language proceeds through the direct application of specific knowledge 

about the metaphors in the language. The interpretation of novel metaphors is accom­

plished through the systematic extension, elaboration, and combination of already well­

understood metaphors. The proper way to approach the topic of metaphor, therefore, is 

to study the details of both individual metaphors and the system of metaphors in the 

language. 

It is useful here to consider an analogy between the study of metaphor and the study 

of syntax. Broadly speaking, the study of syntax is concerned with the representation, 

use and acquisition of sets of complex facts that may be said to represent the grammar of 

a language. The approach taken in this thesis approaches the study o• metaphor in a 

similar fashion. In particular, it addresses the representation, use, ana acquisition of 

knowledge about the metaphors in the language. 

This approach has been embodied in MIDAS (Metaphor Interpretation, Denota­

tion, and Acquisition System). MIDAS is a set of computer programs that can be used to 

perform the following tasks: explicitly represent knowledge about conventional meta­

phors, use this knowledge to interpret metaphoric language, and learn new metaphors as 

they are encountered. 

In order to make the problem of understanding metaphors more concrete, consider 

the implications of (1) through (3) for a system like the UNIX Consultant (Wilensky 

1986). UC is a natural language consultant system that provides naive computer users 

with advice on how to use the UNIX operating system. Metaphors like those shown 

above are ubiquitous in technical domains like UNIX. A ·vste::n that is going to accept 

natural language input from users and provide appropriat 1atural language advice must 

be prepared to handle such metaphorical language. Cons1der the following UC session 

illustrating the processing of (2). 

> (do-sentence) 

Interpreting sentence: 

How can I get into lisp? 

Applying conventional metaphor Enter-Process. 

UC: You can get into lisp by typing lisp to the shell. 

In this example, the user has employed the conventional metaphor, described 

above, that entails that programs can be viewed as enclosures or environments. The 

action of entering such an enclosure, underlying the phrase get into, corresponds to the 

- 2-



action that begins the use of the program. In order to appropriately handle this example, 

UC must be able to access and apply specific knowledge about this conventional meta­

phor. 

UC handles this kind of metaphoric language by calling upon MIDAS. In this 

example, UC calls upon MIDAS to find a coherent interpretation for this use of get into. 

MIDAS finds and applies the conventional metaphor that allows the invocation of a pro­

gram to be viewed as an entering. Chapter 5 gives the full details of how MIDAS inter­

prets conventional metaphors for which it has adequate knowledge. 

The previous example illustrates the situation where a user employs a conventional 
metaphor of which MIDAS has explicit knowledge. However, a system like MIDAS will 

inevitably encounter metaphors for which it has no adequate conventional knowledge. 

Consider the following UC session illustrating (1). 

> (do-sentence) 

Interpreting sentence: 

How can I kill a process? 

No valid interpretations of killing. 

=========================================================== 
Entering Metaphor Extension System 

Atterr:;.ting to extend existing metaphor. 

Extending similar metaphor Kill-Conversation. 

Creating new metaphor: Killing-Terminate-Computer-Process 

UC: You can kill a computer process by typing Ac to the shell. 

In this example, the user has employed the conventional UNIX metaphor that the 

termination of an ongoing process can be viewed as a killing. However, unlike in the 

previous example, MIDAS finds that it is initially unable to interpret this example 

because it has no knowledge of this conventional metaphor. This example illustrates the 

operation of the learning component of MIDAS, the Metaphor Extension System (MES). 

This system is invoked by MIDAS when it discovers a metaphor for which it has no ade­

quate knowledge. The task of the MES is to attempt to extend its knowledge of some 

existing metaphor in a way that will yield a coherent interpretation for the new use and 

provide a basis for directly understanding similar uses in future. In this case, the system 

finds and extends a known metaphor that also uses kill to mean terminate. The full 
details of theMES component of MIDAS will be given in Chapters 6 through 9. 

- 3-



The approach to handling metaphor embodied in MIDAS is a reaction against the 

strategies employed in previous computational approaches to metaphor. Chapter 2 will 

provide a detailed analysis of these approaches. This section will serve to highlight the 

major differences between the approach taken here and these previous approaches. 

Previous computational approaches to metaphor have adopted, what I call, a 

knowledge-deficient approach. By this, I mean an approach that makes no explicit use of 

knowledge about the metaphors in the language. The knowledge-deficient approach has 

been manifested in two distinct processing strategies. 

The word-sense strategy (Riesbeck 1978, Wilensky and Arens 1980, Small 1982, 

Hirst 1983) recognizes that there are conventional uses of words that deviate from ordi­

nary compositional, or literal, meaning. The word-sense strategy addresses this problem 

by merely listing each separate use as an isolated and unmotivated word-sense in the lex­

icon. While this approach adequately allows known conventional senses to be inter­
preted correctly, it nevertheless has a number of shortcomings. 

The first shortcoming involves a representational issue. The listing of each separate 

use as an individual fact in the lexicon fails to capture the systematicities among senses 

of different words or among the senses of a single word. This enumeration of each use as 

an isolated and unmotivated fact about the language leads to the second shortcoming. 

The lack of structure in the knowledge makes it difficult to predict or classify the mean­

ing of new uses when they are encountered. The approach taken in this thesis is an 

attempt to list these uses as conventional parts of our language knowledge while still 
capturing the rich conceptual structure that gives rise to them. 

The other major paradigm (Wilks 1973, 1975, 1978, Russell 1974, Carbonell 1981, 
Dejong and Waltz 1983, Fass 1983, 1987) has held that metaphorical language is not a 

conventional part of the language and hence there can be no explicit knowledge of meta­

phor. Metaphors must therefore be treated as anomalous or ill-formed deviations from 

normal language. The basic approach to interpreting these metaphors has been to first 

recognize their presence by virtue of the fact that they deviate from the known semantics 
of a literal interpretation. The task of interpreting this anomalous input is then seen as a 

special purpose task requiring access to knowledge and inference techniques that are not 

a part of the normal language processing faculties. 

The approach taken here is a reaction against these knowledge-deficient 

approaches. The metaphors in the language are viewed as conventional parts of the 

language. They are as conventional a part of the language as the rules of the grammar or 

words in the lexicon. The proper approach, therefore, is to study them from the perspec­

tive of normal language processing through the correct application of specific knowledge. 

Unlike the word-sense approach, this knowledge must reflect the rich structure underly­

ing the conventional metaphors in the language and attempt to account for how these 

metaphors can be acquired. 

- 4-



1.3. Details of the Approach 

This section will provide an overview of the three-part MIDAS approach to meta­

phor. In particular, it will give detailed examples of the following topics: 

• Representation: The explicit representation in a knowledge-base of the conven­

tional metaphors in the language in the form of explicit associations between con­

cepts. 

• Interpretation: The correct and efficient application of the above metaphoric 

knowledge to the interpretation of metaphoric language. 

• Learning: The acquisition of new metaphors when examples are encountered for 

which no known metaphor provides a coherent explanation. 

1.3.1. Representation 

Consider the following example of a conventional UNIX metaphor. The meta­

phorical use of the word in reflects a systematic metaphorical structuring of processes as 

enclosures. 

( 6) I am in Emacs. 

Metaphors like this may be said to consist of two sets of component concepts, a 

source component and a target component The target consists of the concepts to which 

the words are actually referring. The source refers to the concepts in terms of which the 

intended target concepts are being viewed. In this example, the target concepts are those 

representing the state of currently using a computer process. The target concepts are 

those that involve the state of being contained within some enclosure. 

The approach taken here is to explicitly represent conventional metaphors as sets of 

associations between source and target concepts. The metaphor specifies how the source 

concepts reflected in the surface language correspond to various target concepts. In this 

case, the metaphor consists of component associations that specify that the state of being 

enclosed represents the idea of currently using the editor; where the user plays the role of 

the enclosed thing, and the Emacs process plays the role of the enclosure. 

These sets of metaphoric associations, along with the concepts that comprise the 

source and target domains, are represented using the KODIAK (Wilensky 1986) 

representation language. KODIAK is an extended semantic network language in the 

tradition of KL-ONE and its variants. The details of KODIAK and the representation of 

metaphoric knowledge will be fully described in Chapter 4. 

These sets of metaphoric associations representing conventional metaphors in the 

- 5-



language are full-fledged KODIAK concepts. As, such they can be related to other con­
cepts and arranged in abstraction hierarchies using the inheritance mechanisms provided 
by KODIAK. This hierarchical organization of conventional metaphoric knowledge is 
the primary means used to capture the regularities exhibited by the system of metaphors 
in the language. Chapter 3 provides an analysis of some of these regularities and poses 
some representational requirements. Chapter 4 will demonstrate how these requirements 
are met in KODIAK. 

1.3.2. Interpretation 

Metaphor is a normal and conventional part of language. The interpretation of utter­
ances containing metaphors should reflect this fact in the way that the metaphors are pro­
cessed. In particular, the interpretation of metaphor should not be viewed as an excep­
tion to normal processing. The approach taken here is that metaphoric and literal 
interpretations have equal status, and are evaluated using interpretation mechanisms that 
are fundamentally the same. 

The main thrust of this approach is that normal processing of metaphoric language 
proceeds through the direct application of specific knowledge about the metaphors in the 
language. 

The interpretation of sentences containing metaphoric language is a two-step pro­
cess in MIDAS. The first step in the interpretation of an input sentence is the production 
of a syntactic parse and a preliminary semantic representation. In the second step, this 
preliminary representation is replaced by the most specific interpretation that can 
coherently account for the input. This interpretation may be a literal one or one of a 
number of conventional metaphorical interpretations. 

This general interpretation process has been implemented in the Metaphor 
Interpretation System (MIS) component of MIDAS. The MIS examines the initial primal 
representation in an attempt to detect and resolve uses of conventional UNIX metaphors. 
In the following UC example, a user has posed a question involving the conventional 
metaphor structuring processes as enclosures. The MIS component finds and resolves this 
metaphor. The resolution produces an instantiation of a coherent target concept 
representing the correct conventional meaning of the utterance. 

In the following example, trace output is interspersed with a running commentary 
shown in normal Roman font. New examples are introduced with bold horizontal lines, 
while a running commentary is delimited with narrower lines. 

- 6-



> (do-sentence) 

Interpreting sentence: 

How can I get into lisp? 

Interpreting primal input. 

(A EnteringSO (i Entering) 

(agent597 (i agent) (A I203 (i I))) 

(patient562 (i patient) (A Lisp58 (i Lisp)))) 

The input phrase get into is treated as a phrasal unit with a conventional meaning 

corresponding to Entering. The preliminary semantic representation produced in this 

step is called the primal representation (Wilensky 1987). The primal representation pro­

duced by the parser represents concepts derivable from knowledge of the grammar and 

lexicon available to the parser. In particular, the primary task accomplished in this phase 

is the appropriate assignment of filled case roles to the concept underlying the head of a 

phrase. This primal representation* represents a level of interpretation that is explicitly 

in need of further semantic processing. It should not be confused with what has tradi­

tionally been called a literal meaning. The primal representation should be simply con­

sidered as an intermediate stage in the interpretation process where only syntactic and 

lexical information has been brought to bear. 

Concreting input relations. 

Concreting patient to entered. 

Concreting agent to enterer. 

The patient and agent roles, with their respective filler concepts I203 and 

Lisp58, were derived solely from the verb class that enter belongs to, and the syntax of 

the sentence. In this next step of processing, these generic roles are replaced by the more 

specific semantic roles that are actually attached to the Entering concept. An inference 

where a given concept is replaced by a more specific concept, based on partial informa­

tion, is called a concretion inference (Norvig 1983, Wilensky 1983, Wilensky et al 

1986). The details of concretion are given in Chapter 5. In this example, it is inferred 

* This use of primal content differs from Wilensky's formulation in several ways. Wilensky (1987) does not envision these 

as separate processing stages at all, but rather as aspects of the analysis of an utterance. However, the process model 

developed in this thesis gives rise naturally to an intermediate stage of representation that does correspond to part of 

Wilensky's primal cootcnL A more complete discussion of the role of the primal representation and its relation to 

Wilensky's is given in Chapter 5. 

- 7-



that the agent is an enterer and the patient of an Entering is an entered. 

Interpreting concreted input. 

(A EnteringSO (i Entering) 

(entererSO (i enterer) (A I203 (i I))) 

(entered50 (i entered) (A Lisp58 (i Lisp)))) 

Failed interpretation: EnteringSO as Entering. 

Failed interpretation: Entering50 as Enter-Association. 

The literal interpretation and one of the other known Entering metaphors are 
rejected before the correct metaphor is found :md applied. These interpretations are 
rejected because the input concepts filling the roles of enterer and entered do not 
match the requirements for these roles in these interpretations. In particular, the interpre­
tation as an actual Entering requires that the entered CC'ncept must be a kind of enclo­
sure. The filler of the entered role in the input, Lisp58, fails this requirement, there­
fore this interpretation is rejected. Similarly the Enter-Association metaphor specifies 
that the entered concept must be a kind of Association. Again, Lisp58 fails to 
satisfy this constraint and causes the rejection of the metaphoric interpretation posing this 
constraint. 

Note that the fact that the system considers the literal interpretation first is an 
artifact of the search procedure. It does not indicate any reliance on attempting the literal 
meaning first as was the case in previous approaches. All the conventional metaphorical 
uses have equal status with the known literal concept, Entering. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Enter-Lisp. 

(A Enter-Lisp (i Container-Metaphor Metaphor-Schema) 

(enter-lisp-res enter-res ~ lisp-invoke-result) 

(lisp-enterer enterer ~ lisp-invoker) 

(entered-lisp entered ~ lisp-invoked) 

(enter-lisp-map Entering~ Invoke-Lisp)) 

Mapping input concept EnteringSO to concept Invoke-Lisp30 

Mapping input role entererSO with filler I203 to 

target role lisp-invoker30 

Mapping input role enteredSO with filler Lisp58 to 

target role lisp-invoked30 

Yielding interpretation: 

(A Invoke-Lisp30 (i Invoke-Lisp) 

- 8-



(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

(lisp-invoker30 (i lisp-invoker) 

(A I203 (i I)))) 

The Enter-Lisp metaphor has been found and applied to the given input concepts. 

The main source concept is interpreted as an instance of the Invoke-Lisp concept 

according to the enter-lisp-map. The input roles enterer and entered are inter­

preted as the target concepts lisp-invoker and lisp-invoked respectively. 

This interpretation of the Entering concept is then used to fill the role of the 

topic role of the How-Question that constitutes the representation of the rest of the sen­

tence. 

Final interpretation of input: 

(A How-Q207 (i How-Q) 

(topic206 (i topic) 

(A Invoke-Lisp30 (i Invoke-Lisp) 

(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

(lisp-invoker30 (i lisp-invoker) 

(A I203 (i I)))))) 

This how-question, with the reinterpreted topic concept, is then passed along to the 

next stage of UC processing. UC then prints the answer as follows. 

Calling UC on input: 

(A How-Q207 (i How-Q) 

(topic206 (i topic) 

(A Invoke-Lisp30 (i Invoke-Lisp) 

(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

(lisp-invoker30 (i lisp-invoker) 

(A !203 (i I)}}})} 

UC: You can get into lisp by typing lisp to the shell. 

Note that when a conventional metaphor has been employed by the user in asking a 

question, UC's natural language generator uses the same metaphor in producing the 

answer. In this example, the system uses the same enclosure metaphor employed by the 

user to express the plan. 

- 9-



A complete description of the MIS component of MIDAS is given in Chapter 5. In 

particular, it describes how the MIS can perform the following tasks: find relevant candi­

date metaphors to apply, choose a correct one to apply based upon the constraints of the 

utterance, and instantiate a representation of the appropriate target concepts. 

1.3.3. Learning 

MIDAS will inevitably face the situation where a metaphor is encountered for 

which none of its known metaphors provides an adequate explanation. This situation 

may result from the existence of a gap in the system's knowledge-base of conventional 

metaphors, or from an encounter with a novel metaphor. In either case, the system must 

be prepared to handle the situation. 

The approach taken here to the understanding of new or unknown metaphors is 

called the Metaphor Extension Approach. The basic thrust of this approach is that a new 

metaphor can best be understood by extending an existing metaphor in a systematic 

fashion. The basis for this approach is the belief that the known set of conventional 

metaphors constitutes the best source of information to use in understanding new meta­

phors. 

The basic strategy is to first find a known metaphor that is systematically related to 

the new example. This candidate metaphor is then applied to the new example in an 

attempt to produce an appropriate target meaning. The process of applying the candidate 

metaphor to the new example is dependent upon the kind of semantic connection 

between the candidate and the new example. Three kinds of connections are recognized, 

yielding three kinds of extension inferences: similarity extension, core-extension and 

combined-extension. The details of these inferences are given in Chapters 7 through 9. 

Once the intended target meaning of the new example has been determined, a new 

metaphor is created and stored away for future use. When metaphors of this type are 

encountered again the system can interpret them directly. 

This strategy is realized in the Metaphor Extension System (MES) component of 

MIDAS. When no coherent explanation can be found for a given primal inpu~ it is passed 

along to the MES. The basic steps of MES algorithm are given in the following sections. 

These steps will then be made more concrete in terms of a detailed trace from theMES. 

Step 1: Characterize the new input. Partial source and target compon~nts of a new 

metaphor are extracted from the primal representation accepted as input. The terms 

current source and current target will be used to refer to the source and target concepts 

derived from the input example. 

Step 2: Search for related metaphors. This step searches for any known metaphors 

that are potentially related to this new use. The search consists of an attempt to find a 

path or paths through the network from the current source to the current target concepts 

- 10-



that contains a known metaphor. A metaphor contained in such a path is judged to be 

relevant. 

Step 3: Evaluate the set of candidate metaphors found in Step 2. The purpose of 

this step is to select a metaphor from the set found in Step 2 for further processing. This 

choice is based on a set of criteria to determine the metaphor that is closest conceptually 

to the current example. 

Step 4: Apply this previously understood metaphor to the current example. The 

candidate metaphor is applied to the current target based on the relationship between the 

candidate mapping and the current example. Depending on this relationship, either a 

similarity, core, or combined extension inference is performed. 

Step 5: Store the new metaphor. Create and store a new metaphor consisting of the 

source and target concepts identified in the above steps along with appropriate associa­

tions between them. This new metaphor will be used directly when future instances of 

this metaphor are encountered. 

Consider the processing of the following example from the MES. 

> (do-sentence) 

Interpreting sentence: 

How can I kill a process? 

Interpreting primal input. 

(A Killingl6 (i Killing) 

(agent87 (i agent) (A I46 (i I))) 

(patient76 (i patient) 

(A Computer-ProcesslO (i Computer-Process)))) 

The parser accepts the input sentence, as specified by the user, and produces a pri­

mal representation of the input in the form of KODIAK concepts. This .primal represen­

tation contains only information derivable from the grammar and lexicon. This primal 

representation is taken to be one that is in need of further elaboration and interpretation. 

In this example, the concepts associated with the verb kill are interpreted first. 

Concreting input relations. 

Concreting patient to kill-victim. 

Concreting agent to killer. 

Interpreting concreted input. 

- 11 -



(A Killingl6 (i Killing) 

(killerl6 (i killer) (A I46 (i I))) 

(kill-victiml6 ci kill-victim) 

(A Computer-ProcesslO (i Computer-Process)))) 

The case relations specified in the initial primal representation are replaced by more 
specific relations that are directly attached to the concept Killing. This is called the 
concreted primal representation. Note that the constraints on the more specific relations 
are not checked against the fillers of the roles during this concretion. In this example, 
this concretion results in the agent role being concreted to the killer and the patient 

role being concreted to the kill-victim. 

Failed interpretation: Killingl6 as Killing. 

Failed interpretation: Killingl6 as Kill-Delete-Line. 

Failed interpretation: Killingl6 as Kill-Sports-Defeat. 

Failed interpretation: Killingl6 as Kill-Conversation. 

No valid interpretations. Attempting to extend existing metaphor. 

Once the concreted representation has been created, it must undergo further process­
ing to find a valid interpretation. The system attempts to determine if the given input is 
consistent with any of the known conventional interpretations, literal or metaphorical. In 
this case, the input is not consistent with either the literal Killing concept or any of the 
three known metaphorical uses of kill. 

As in the previous example, the fact that the system considers the litera 
tion first is an artifact of the search procedure. The conventional metaphoric •. 
equal status with the known literal concept, killing. 

terpreta­
lses have 

At this point, all the possible conventional interpretations of the primal input have 
been eliminated as potential readings. The input is now passed to the Metaphor Exten­
sion System in an attempt to extend an existing metaphor to cover this new use and deter­
mine the intended meaning. 

========~-================================================= 

Entering Metaphor Extension System 

Searching for related known metaphors. 

Metapho=s found: Kill-Conversation Kill-Delete-Line Kill-Sports-Defeat 

The first step in the extension step is to collect all the relevant known metaphors that 
might be related to this new use. This initial search scans through all the metaphors 

- 12-



directly attached to the input concept, and also at all the metaphors attached to concepts 

that are core-related to the input concept. In this case, the system has knowledge of three 

metaphors that share the same source concept with the current use. 

Selecting metaphor Kill-Conversation to extend from. 

(A Kill-Conversation (i Kill-Metaphor Metaphor-Schema) 

(kill-c-res kill-result -t conv-t-result) 

(killed-conv kill-victim -t conv-termed) 

(killer-terminator killer -t conv-termer) 

(kill-term Killing -t Terminate-Conversation)) 

The candidate metaphors are ranked according to a "conceptual distance" metric. 

This is a measure of how close the candidate metaphors are to the new example. The pri­

mary factor contributing to this metric is a measure of similarity between the target con­

cepts of the candidate metaphor and the input filler concepts. This conceptual distance 

metric is fully explained in Chapter 7. The candidate metaphor that is judged to be 

closest to the input example according to this metric is chosen as the candidate metaphor 

for further processing. 

The selected metaphor is classified for further processing according to its relation­

ship to the input example. In this case, the candidate metaphor is in a similarity relation­

ship to the input metaphor. 

Attempting a similarity extension inference. 

Extending similar metaphor Kill-Conversation with 

target concept Terminate-Conversation. 

Abstracting Terminate-Conversation to ancestor concept 

Terminating producingabstract target meaning: 

(A Terminating3 (i Terminating) 

(terminated3 (i terminated) 

(A Computer-ProcesslO (i Computer-Process))) 

(terminator3 (i terminator) (A I46 (i I)))) 

The first step in the processing of a similarity extension inference is to identify the 

concepts specified in the input example with their corresponding target concepts. In this 

example, the concept Computer-P rocesslO is identified with the target role of 

terminated-conversation, and the role of I 4 6 is identified with the target role of 

converstation-terminator. The constrainers of these concepts, however, are too 

specific to accept these input concepts. In this example, there is a mismatch between the 

input concept Computer-Process and the candidate target concept Conversation. 

- 13-



The next step, therefore, is to abstract the target concept of the candidate to the first 

concept that can accept the concepts specified in the input. In this case, the concept 

Terminate-Conversation is abstracted to its ancestor concept Terminating. The 

ancestor of the terminated-conversation role has as a constrainer the abstract con­

cept Process, which can constrain the more specific concept Computer-Process. 

Concreting target concept Terminating to Terminate-Computer-Process 

producing concreted meaning: 

(A Terminate-Computer-ProcesslO 

(i Terminate-Computer-Process) 

(c-proc-termerlO <i c-proc-termer) 

(AI46 (ii))) 

(c-proc-termedlO <i c-proc-termed) 

(A Computer-ProcesslO (i Computer-Process)))) 

The next step in the similarity extension inference is to look down the hierarchy 

from Terminating to see if there are any more specific concepts beneath this one that 

can adequately accommodate the input concepts. The specific existing concept 

Terminate-Computer-ProcesslO is found. The concept c-proc-termedlO is a more 

specific concept than terminated and can still accept the input concept Computer­

ProcesslO as a filler, since the constraining concept on the concept c-proc-termed is a 

Computer-Process. 

Creating new metaphor: 

Mapping main source concept Killing to main target concept 

Terminate-Computer-Process. 

Mapping source role killer to target role c-proc-termer. 

Mapping source role kill-victim to target role c-proc-termed. 

(A Killing-Terminate-Computer-Process (i Kill-Metaphor) 

(kill-victim-c-proc-termed-map kill-victim ~ c-proc-termed) 

(killer-c-proc-termer-map killer ~ c-proc-termer) 

(killing-terminate-computer-process-map Killing 

~Terminate-Computer-Process)) 

The next stage of processing creates a new metaphor that represents this newly 

learned use. The role correspondences from the input example to the target concepts of 

the candidate metaphor form the basis for a new set of metaphoric associations that make 

u; the new metaphor-sense. In this case, the main source concept, Killing, is mapped 

to the intended target concept Terminate-Computer-Process. The source aspectuals 

killer and kill-victim are mapped to the concepts c-proc-termer and c-proc­

termed, respectively. In each case, a new metaphor-map is created to connect the source 

and target concept in the knowledge base. The map is then classified properly in the 

- 14-



hierarchy of existing maps and connected to the newly created metaphor-sense represent­

ing this new metaphor. 

In the case of a similarity extension inference, the newly created metaphor-maps are 

made siblings (children of the same parent) of the corresponding metaphor-maps from 

the candidate metaphor used. The newly created metaphor-sense is also made a sibling 

of candidate metaphor. In the current example, the newly created metaphor-sense, 

Kill-Terminate-Computer-Process, is made a sibling of the candidate metaphor 

Kill-Conversation. The names given to the new metaphor-maps and metaphor-sense 

are created by concatenating the names of the component source and target concepts. 

(Although the names themselves are not relevant to the functioning of the program) 

Final interpretation of input: 

(A How-Q46 (i How-Q) 

(topic46 (i topic) 

(A Terminate-Computer-ProcesslO 

(i Terminate-Computer-Process) 

(c-proc-termerlO (i c-proc-termer) 

(A I46 (i I))) 

(c-proc-termedlO (i c-proc-termed) 

(A Computer-ProcesslO 

(i Computer-Process)))))) 

The final representation of the input sentence now contains the intended target con­

cept, Terminate-Computer-Process, as the topic of user's original how-question. 

Calling UC on input: 

(A How-Q46 (i How-Q) 

(topic46 (i topic) 

(A Terminate-Computer-ProcesslO 

(i Terminate-Computer-Process) 

(c-proc-termerlO (i c-proc-termer) 

(A I46 (i I))) 

(c-proc-termedlO (i c-proc-termed) 

(A Computer-ProcesslO 

(i Computer-Process)))))) 

UC: You can kill a computer process by typing Ac to the shell. 

In the case where the system is processing a UC question, the final representation of 

the input concepts are then passed to the UC system for further processing. In this case, 

the system proceeds to answer the user's question on how to terminate a process. In the 

- 15 -



event that the main concept that UC is addressing has been derived metaphorically, UC's 
generator uses the user's source language when expressing its answer. In this case, the 
generator adopts the user's use of kill to describe the termination. 

The following session demonstrates the altered processing by the system now that 
the Killing-Terminate-Computer-Process has been acquired. The same question is 
again posed to the system. 

> (do-sentence) 

Interpreting sentence: 

How can I kill a process? 

Interpreting primal input. 

(A Killingl7 (i Killing) 

(agent88 (i agent) (A I47 (i I))) 

(patient77 (i patient) 

(A Computer-Processll (i Computer-Process)))) 

Concreting input relations. 

Concreting patient to kill-victim. 

Concreting agent to killer. 

Interpreting concreted input. 

(A Killingl7 (i Killing) 

(killerl7 (i killer) (A I47 (i I))) 

(kill-victiml7 (i kill-victim) 

(A Computer-Processll <i Computer-Process)))) 

Failed interpretation: Killingl7 as Killing. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Killing-Terminate-Computer-ProcP~s. 

(A Killing-Terminate-Computer-Process (i Kill-Metaphor) 

(kill-victim-c-proc-termed-map kill-victim ~ c-proc-termed) 

(killer-c-proc-termer-map killer ~ c-proc-termer) 

(killing-terminate-computer-process-map Killing 

~ Terminate-Computer-Process)) 

- 16-



... 

The application of this known metaphor immediately yields the intended interpreta-

tion. 

Yielding interpretation: 

(A Terminate-Computer-Processll 

(i Terminate-Computer-Process) 

(c-proc-termedll ci c-proc-termed) 

(A Computer-Processll (i Computer-Process))) 

(c-proc-termerll ci c-proc-termer) 

(A I47 (i I))}) 

Concretion yields: 

(A Terminate-Computer-Processll 

(i Terminate-Computer-Process) 

(c-proc-termedll ci c-proc-termed) 

(A Computer-Processll (i Computer-Process))) 

(c-proc-termerll (i c-proc-termer) 

(A I47 (i I)))) 

As in the previous example, all the conventional meanings are attempted before an 

interpretation is settled upon. 

Failed interpretation: Killingl7 as Kill-Delete-Line. 

Failed interpretation: Killingl7 as Kill-Sports-Defeat. 

Failed interpretation: Killingl7 as Kill-Conversation. 

Final interpretation: 

(A Terminate-Computer-Processll 

(i Terminate-Computer-Process) 

(c-proc-termedll (i c-proc-termed) 

(A Computer-Processll (i Computer-Process))) 

(c-proc-termerll ci c-proc-termer) 

(A I47 (i I)))) 

Calling UC on input: 

(A How-Q47 (i How-Q) 

(topic47 ci topic) 

(A Terminate-Computer-Processll 

(i Terminate-Computer-Process) 

(c-proc-termedll ci c-proc-termed) 

(A Computer-Processll 

(i Computer-Process))) 

- 17-



(c-proc-termerll (i c-proc-termer) 

(A I47 (i I)))))) 

UC: You can kill a computer process by typing ~c to the shell. 

1.4. Summary 

The approach taken to metaphor in this thesis is fundamentally a knowledge-based 
one. The metaphors that are a conventional part of the language are represented directly 
as associations between source and target concepts. The normal interpretation of meta­
phoric language proceeds through the application of this metaphoric knowledge. Finally 
it is shown how new metaphors can be learned by incrementally extending these known 
metaphors. 

The rest of this thesis provides motivations for and descriptions of the various 
components of MIDAS. Chapter 2 presents an analysis of the relevant previous research 
that led to MIDAS. An analysis of the structure of both individual conventional meta­
phors and systems of metaphors is given in Chapter 3. This serves as a motivation for the 
representation described in Chapter 4. Chapter 4 serves to introduce the general features 
of the KODIAK representation language along with the specific details of KODIAK that 
are used to represent metaphoric language. A description of the metaphor interpretation 
component of MIDAS is given in Chapter 5. 

The remainder of the thesis is devoted to the learning component of MIDAS. 
Chapter 6 gives an overview of the Metaphor Extension System (MES), which can 
acquire new metaphors when new unknown metaphors are encountered during normal 
processing. The complete details of the MES algorithm are given in Chapter 7. Chapters 
8 and 9 provide the details for the two basic extension inferences used by the MES. 
Chapter 10 provides a set of extended examples illustrating how theMES can learn meta­
phors that were handled by previous computational approaches. Finally, some conclu­
sions are given in Chapter 11. 

- 18 -



Chapter 2 

Related Research 
This chapter reviews some of the relevant past research on computational 

approaches to metaphor. Much of the work discussed here is based upon the modern 

view of metaphor articulated by Richards (1936) and Black (1954, 1962). The collec­

tions of Ortony (1979) and Johnson (1981) provide an appropriate review of the relevant 

metaphor literature. 

As indicated in Chapter 1, the primary difference between the approach taken in this 

thesis and most of the previous computational approaches has to do with the use of expli­

cit metaphoric knowledge. This chapter will focus on the relationship between the stra­

tegies employed in these earlier systems and the use of metaphoric knowledge. One of 

the main results will be to show that the most successful systems derived their power 

from strategies that made implicit use of knowledge of conventional metaphor. 

2.1. Knowledge-Deficient Approaches 

The principle characteristic of the approaches described in this section is that meta­

phor is treated as an anomalous novel departure from conventional language. Because 

metaphor is not considered to be a conventional part of the language, explicit knowledge 

about the metaphors in the language is not available to these approache~. This complete 

lack of explicit knowledge about the metaphors in the language leads to the term 

knowledge-deficient. 

These approaches do, however, make use of arbitrary amounts of knowledge about 

context and the semantics of the various source and target domains of the metaphors that 

they are concerned with. This knowledge is used in a variety of ways to determine the 

meaning of metaphors when they are encountered. 

- 19-



2.1.1. Natural Language Processing Approaches 

The approaches described in this section are explicitly concerned with natural 
language processing concerns. That is, they are actually concerned with the task of inter­
preting sentences containing metaphors. 

The following approaches all follow what I call the "literal meaning first" approach. 
This approach asserts that the only conventional meaning is the literal meaning. These 
systems all attempt to first interpret their inputs in terms of this literal meaning. A meta­
phorical interpretation is only attempted if the input is clearly not compatible with a 
literal interpretation. This incompatibility is typically manifested by a violation of one or 
more of the semantic constraints posed by the literal interpretation, usually in the form of 
selection restriction violations. 

The presence of a selection restncuon violation is taken as evidence for the 
existence of metaphor. At this point, these approaches take a variety of approaches to 
dealing with this situation depending on the particular concerns of the individual 
research. 

2.1.1.1. Wilks 

Wilks (1973, 1975, 1978) presents a series of approaches to metaphor centered 
around the notion of preference semantics. This work developed partially as a reaction 
to the work on lexical semantics by Katz and Fodor (1963) which gave rise to the idea of 
selection restrictions. According to Katz and Postal selection restrictions could be used 
on a binary basis to detennine the well-formedness of particular utterances. Consider the 
following example from Wilks (1975): 

(1) My car drinks gasoline. 

According to the selection restriction approach, the verb drink requires that the 
drinker be an animate. The above sentence is simply not well-formed because the actor 
is a car and not animate. Wilks points out that such selection restriction violations are 
the case more often than not, and that the utterances in which they occur are perfectly 
interpretable. He therefore proposed the notion of a preference. As far as metaphor was 
concerned, the initial use of preferences was to simply recognize a potential metaphorical 
use when a preference restriction was violated. However, no attempt was made to find 
the intended target meaning of the utterance. This technique of using selection restric­
tion violations to detect metaphors was adopted in almost all subsequent computational 
approaches. 

In Wilks (1978) the notion of simply accepting a metaphorical preference violation 
was replaced with the notion of a projection using a knowledge structure called a 
pseudo-text. A pseudo-text was a script-like representation of some episodic or 

- 20-



contextual information about the target domain. The process of projection replaced the 

item with the violated preference with some other concept from the pseudo-text. 

Consider the operation of a projection inference on Example (1). The drink predi­

cate would be replaced by a concept from a pseudo-text containing detailed information 

about the target concept car. The replacement concept is chosen by matching the source 

concept drink against all the concepts in the car pseudo-text. The concept that best 

matches is chosen as the replacement. In this case, the concept of a car using gasoline is 

chosen as the target concept that best matches drink. 

It is hard to evaluate this approach since the details of the general matching algo­
rithm are never given. Another problem is that the semantic status of the pseudo-texts is 

never suitably explained. In particular, it is not clear what goes into a pseudo-text and 

how it relates to more general long-term semantic information. Consider the following 

problem posed by Wilks. 

(2) Britain entered the Common Market. 
(3) Britain tried to leave the Common Market. 

Example (2) can be handled perfectly well by the projection mechanism. A 

pseudo-text about the Common Market is accessed and the source concept, entering, is 
matched against it yielding a concept representing the idea of Britain associating itself 

with the Common Market. However, Wilks claims that (3) could not be handled because 

no pseudo-text could exist to represent the idea of Britain leaving the Common Market, 
since this event has never occurred. This seems to imply that pseudo-texts are episodic 

in nature and not semantic. Surely a system that can understand the notion of joining an 
association, should be capable of understanding the notion of quitting. In any case, the 
general approach of replacing the source concept with a concept related to the input tar­

get concept is basically sound. The problem with the projection inference is the lack of 

detail in the matching algorithm and the vagueness in describing from where candidate 

target concepts are chosen. These two issues will reappear in the discussions of the rest 

of the previous approaches. 

Another problem with this approach, and with all the selection restriction 

approaches, is the reliance on selection restriction or preference violations. As Wilks 

states "projection is operated only in the presence of preference-breaking". Consider the 

following example. 

(4) McEnroe killed Connors. 

This example involves no violations of the literal semantics of kill and yet has an 

obvious conventional metaphorical meaning. Similarly a literal interpretation of no man 

is an island involves no semantic violations. A literal interpretation of either of these 

examples does involve what might be called appropriateness conditions. In these exam­

ples, these conditions might be that it would be unlikely that McEnroe would actually 

slay Connors, or that literally stating that no man is an island adds no new information. 

In general, the literal interpretation of a metaphorical utterance will cause a violation of 

- 21 -



one or more of these appropriateness conditions. These may or may not include a viola­

tion of a selection restriction. This fact poses serious problems for theories of metaphor 
that rely heavily on the belief that metaphors arise exclusively from selection restriction 

violations of the literal interpretation. Some possible solutions to this problem will be 

discussed in Chapter 5. 

This strategy is in one form or another the fundamental one used in all the follow­

ing approaches. It can be summarized in the following two steps. 

1 Detect the presence of a metaphor by noticing a selection restriction violation. 

2 Replace the source concept with some known concept that is related in some way to 
the concept causing the violation. 

The focus in the following discussions will be on the second step. Of particular interest 

will be the workings of various matching algorithms that replace the source concept with 
an intended target by directly matching the source against all possible target concepts. 

2.1.1.2. Fass 

Fass (1983, 1987, 1988) introduces an approach the lexical semantics called Colla­

rive Semantics (CS). CS builds on and extends the preference semantics approach of 

Wilks. Fass addresses a wide range of lexical issues including metaphor. Consider 
Fass's reanalysis of the following example from Wilks. 

(6) My car drinks gasoline. 

Fass, like Wilks, adopts the basic approach of noticing a metaphor by virtue of a 

selection restriction vioiation and then replacing it with some targe: concept. As men­

tioned above Wilks provided no principled method for matching source concepts against 

various targets in order to select the appropriate meaning. Fass provides the details of an 

approach to this problem by using an abstraction hierarchy. The basic assertion is that 

the intended target meaning will be a sibling of the source concept in an abstraction 

hierarchy. The search for this sibling is guided by the target concepts in the input exam­

ple. 

Consider the details of (6). The definition of the source concept drink requires that 

an animate drinker consume a potable liquid. The input sentence violates these restric­
tions because a car is not an animate and gasoline is not a potable liquid. These viola­

tions suggest a metaphorical reading. 

The intended target meaning of the sentence is found by matching the facts of the 

long-term source concepts (that an animal drinks liquids) against all the known facts 

about the target concept car. This analogical matching proceeds by attempting to find 
common ancestors between the source concept and the various concepts in the target 

domain. In this case, we find that drink in the source matches use (cars use £asoline) in 
the target domain. This match is successful because there is a common ances>A concept, 
expend, between drink and use. This analogical match is confirmed because a common 

- 22-



ancestor match between gasoline and potable-liquid is coherent with the semantics of 

expend. The meaning of the metaphor is, therefore, represented as an analogy of the 

form that animals drink potable liquids as cars use gasoline. 

The approach just described works well when the source and target concepts of the 

metaphor are closely related hierarchically. The greater the conceptual distance between 

the source and target concepts, the smaller the likelyhood that the common ancestor con­

cept will provide a meaningful analogy. Nevertheless, the use of abstraction hierarchies 

to perform matching operations at least provides a basis for the matching of distinct 

source and target concepts. Chapter 8 discusses the limitations of using abstraction 

hierarchies to do this kind of analogical learning. In addition, it will show that the useful­

ness of this matching approach is greatly amplified by the addition of explicit conven­

tional metaphorical knowledge. 

2.1.1.3. Russell. 

The system described in Russell (1974) fits in neatly with the approach just 

described. Russell uses Conceptual Dependency (Schank and Abelson 1977) as her 

underlying knowledge representation. Violations of selection restrictions were modeled 

as violations of the restrictions on the various roles in CD primitives. Consider the fol­

lowing Russell example: 

(5) She offered him an idea. 

According to Russell, the essential source concept in this example involves a 

hypothetical PTRANS. (An offer of transfer of physical possession). However, the con­

cept, idea, filling the role of the object transferred, violates the requirements for that role 

imposed by the PTRANS primitive. The filler of the transferred role must be a physical 

object. The intended target concept involves an MTRANS, representing the c ·ununica­

tion, at some level, of the idea from the actor to the recipient. 

Russell demonstrates how a structure matching system can exploit the structure of 

these violations to actually determine the intended target meaning of the metaphor. 

Given the simplicity of the described matching algorithm, the system demonstrated 

surprisingly successful results over a certain class of metaphors. An analysis makes it 

clear that the system made widespread implicit use of conventional metaphoric 

knowledge to achieve these results. 

Russell employed two techniques that in reality comprise implicit knowledge of 

conventional metaphor. The first technique used a table of selection restriction violation 

types. This table associated certain kinds of restriction violations with certain target 

domains. This table was used to limit the number of concepts that had to be matched dur­

ing the matching phase. For example, the table indicated that when a constraint requiring 

a physical object was violated by some kind mental object, as in (5), then the target con­

cept was to found among a set of concepts marked as being in the mental domain. The 

original source concept was then only matched against concepts in this domain. This 

- 23-



represented an implicit set of conventional associations from a source to a target domain. 

The second source of implicit metaphoric knowledge is much more important to the 
success of this program. The target concepts of the various metaphors discussed were 
implicitly structured in terms of the original source concepts. The reason that the 
matcher could conclude a correct match among many possible candidates, using only a 
simple matching algorithm, results from this implicit structuring of the target domains. 

Consider the MTRANS CD primitive which matches the PTRANS source concept 
in (5). Russell's matcher finds that MTRANS has a high degree of match with PTRANS. 
This is apparently based on the similar case structure of these primitives. In particular, 
each primitive possesses an ACTOR, OBJECT, FROM and TO case role that are allowed 
to match as identical roles. This structure, however, obscures the fact the MTRANS 
primitive is nothing more than a primitive codification of the Conduit Metaphor, (Reddy 
1979). This metaphor entails, in pan, that ideas are objects, possession is belief or 
knowledge, and that transfer of these ideas is communication. The MTRANS primitive 
simply embodies this metaphor. 

The power of this approach therefore arises not from its matching capabilities. 
Rather, the power arises from the fact that the target concepts have been structured in 
terms of a deeply embedded set of conventional conceptual metaphors. Viewed in these 
terms, the overall algorithm of searching for the best match seems a little backwards. 
Rather than hiding the conventional metaphor and making the system search for it with 
an ad-hoc search, it would seem to make more sense to make the metaphor explicit and 
allow it to be indexed and recognized directly. 

2.1.2. Analogical Approaches 

The approaches described in this section are not primarily interested in natural 
language processing. Rather, most of these research efforts are concerned with analogical 
reasoning processes. Most make the assertion that while they are not explicitly dealing 
with metaphor their approaches nevertheless extend to the interpretation of metaphor. 
The implicit assertion is that the solution to the problems of interpreting anc;i producing 
metaphors will fall out from their more general solutions to analogical reasoning. 

In particular, these approaches assert that the meaning of a metaphor results from 
an analogically directed transfer of relations from the source to the target domain. This is 
different from the approach illustrated above by Fass. In that approach an analogical 
match was used to select among existing candidate target concepts. The approaches 
described in this section are actually creating new meanings by transferring relations into 
the target domain from the source domain. 

The analogical transfer approach must perform four tasks in order to succeed in 
properly interpreting a metaphor. These task are as follows: 

-24-



Task 1: Circumscribe the source and target domains. The concepts that actually 

constitute the source and target domains must be identified. 

Task 2: Establish object correspondences. A coherent set of concept to concept 

correspondences must be established from the source to target domain. 

Task 3: Select the transfer set. A set of relations in the source domain must be 

chosen for transfer to the target domain. 

Task 4: Perform the transfer. The final step is transferring the selected relations in 

such a way that they are consistent with the semantics of the target domain. 

There are difficult unsolved problems with each of these tasks. None of the follow­

ing approaches have successfully found a solution to all of these tasks. One or more of 

the tasks is either finessed or ignored completely. This fact limits the practical applica­

tion of any of these approaches to the actual interpretation of metaphorical natural 

language inputs. However, these approaches do provide a number of insights that can be 

usefully applied. In particular, Chapters 8 and 9 will show that by properly using exist­

ing metaphorical structures and some of the heuristics discovered in these approaches the 

complexity of the analogical approach can be reduced to the point where it is a practical. 

2.1.2.1. Winston and Carbonell 

Winston (1980) and Carbonell (1981) make a similar set of proposals that basically 

address Task 3. The basis of these approaches is an analysis of various analogies and 

metaphors. This analysis yields the insight that certain kinds of predicates tend to be 

transferred from the source to target domains in many different analogies and metaphors. 

This leads to the strategy that Task 3 can be solved by simply searching for an a priori 

list of relations and predicates in the source, and then transferring them directly to the 

target. Winston focusses on the preservation of CAUSAL relations while Carbonell 

introduces an ordered list of preserved relations. 

Both of these approaches solve Task 4 by transferring relations from the source to 

the target identically. It turns out that this strategy works well in these approaches. This 

is because the proposed set of preserved relations in both of these approaches are abstract 

enough (like CAUSE) to be applied across a wide range of domains. The approaches do 

not attempt the transfer of systematic domain specific relations. 

2.1.2.2. Gentner 

Gentner's (1983) structure mapping theory proposes a solution to the general prob­

lem of analogical transfer. In fact, only Task 3 is reasonably addressed. 

Task 1 is solved by simply assuming that well-specified source and target concepts 

- 25-



are provided as input. The problem of finding an appropriate analog in not addressed. 

More importantly, the problem of circumscribing the target domain is also not addressed. 

Task 2 is not addressed in Gentner's original work but is addressed in a later com­

puter implementation in Falkenhainer (1986). An object correspondence is found by 

computing all possible pair-wise combinations of concepts and choosing the best one 
based on a ranking of each arrangement. Indurkyha (1987) makes a similar proposal and 

points out that his approach his computationally intractable. The obvious problem with 

these approaches is the exponential number of possible configurations that have to be 

considered. If there are N concepts in the source and target domains then there are N! 

possible configurations to consider. This approach is obviously intractable in any domain 

with a reasonable number of concepts. Any analogy approach must, therefore, be aug­
mented with additional domain specific knowledge that limits the number of 

configurations considered to control this explosive growth. 

The main contribution of the structure mapping approach comes from its approach 

to the third task. Gentner proposes the Systematicity Principle, which states that in ana­
logical transfers systematic sets of relations are preferred for transfer. In effective analo­

gies, simple attributes of source concepts are rarely transferred, while relations among 

concepts are more likely to be preserved. Most likely to carry over are systematic sets of 
relations. A systematic set of relations in this theory refers to sets of relations that make 

reference to one another. This is a purely syntactic notion. Unlike the theories proposed 

by Winston and Carbonell, this theory makes no reference to particular domain specific 

relations that are frequently preserved. The intent is to provide a syntactic rule that will 

capture the same set of things that are captured by Winston's and Carbonell's list. This is 

accomplished by getting at the underlying structure of the relations that they merely list 

In Gentner (1983b, 1986), psychological evidence is given that people's judgements 

of the goodness of metaphors and analogies matches well with the constraints posed by 
the Systematicity Principle. In particular, people find most effective those analogies and 

metaphors that carry over systematic relational information. 

Unfortunately, the Systematicity Principle is not by itself useful in understancl.iPg 

metaphors. This is because it merely states that relations that are carried over will be 

systematic. Note, however, that it does not state that all systematic relations should carry 

over. In the case of metaphor, it is usually the case that only a small subset of the source 

domain is relevant to the structure of the target domain. This subset will b6 systematic 

but there may be many systematic pieces of the source domain that are not relevant to the 

metaphor and are not carried over. Therefore, while the Systematicity Principle imposes 

a useful constraint on the transfer of relations, it is not by itself sufficient to determine an 

appropriate target meaning. 

2.1.2.3. Greiner and Burstein 

Greiner (1985) and Burstein (1986) arrive at similar solutions in their attempts to 
solve some of the complexity problems inherent in both the general best-match approach, 

- 26-



and in Gentner's formulation. The general character of their solutions asserts that larger 

pieces of knowledge are needed. In particular, both use large pieces of knowledge that 

loosely correspond to the idea of chunks, scripts, or macro-operators. The intuition is 

that an understanding of the source or base domain consists not only of a logical set of 

systematically inter-related predicates, but rather that there a larger chunks of knowledge 

available that represent sets of related predicates. These larger chunks of knowledge are 

used in a top-down manner to constrain the number of concepts considered in determin­

ing object correspondences, and also in determining what predicates are transferred to the 

target domain. It is, therefore, the existence of these larger structures in the source ana­

log that makes the task manageable. 

Greiner presents the problem of trying to calculate the fiowrate of a liquid through 

a pipe by using the analogical hint that "Flowrate is like current in an electric circuit". 

The problem is to determine which of the many facts associated with currents in an elec­

tric circuit are applicable to this problem. In particular, we would like to determine that 

the Ohm's law and Kirchoff's First and Second laws are relevant, while all the other facts 

known about electricity are irrelevant. Greiner postulates the prior existence of what he 

terms an abstraction. This abstraction is a set that includes only those concepts relevant 

to this example. The problem is, therefore, to use the analogical hint to find a relevant 

abstraction. This pre-existing abstraction serves to form the object correspondence, and 

to circumscribe the transfer set. Greiner proposes that useful abstractions are formed 

naturally as a by-product of previous problem-solving behavior. 

Greiner's abstraction-based approach is fundamentally compatible with certain 

aspects of the MIDAS approach. In particular, the core-structuring of conventional meta­

phors, which arises from the sharing of important core concepts, corresponds to Greiner's 

notion of an abstraction. Chapters 3 and 9 show how these core-structures can be used to 

form an initial object correspondence and to guide the transfer of relations from the 

source to target domain. In addition, it will be shown that this sharing of important core 

concepts provides the motivation for the existence of structures like Greiner's. 

The basic result of the analysis of these analogy approaches is that analogy can be 

a reasonable tool to use in the interpretation of metaphor. However, it is useful only if it 

is tempered with domain specific knowledge to make the approach tractable. In particu­

lar, Chapters 8 and 9 will show how explicit knowledge of existing conventional meta­

phors provides the leverage necessary to make analogy a reasonable approach to the 

interpretation of new metaphors. 

2.2. Knowledge-Based Approaches 

The metaphoric knowledge approach taken in this thesis was inspired by the work 

of Lakoff and Johnson (1980) and builds on the computational work of Jacobs (1985), 

Wilensky (1986) and Norvig (1987). Lakoff and Johnson effectively demonstrated the 

pervasive systematic conceptual nature of metaphor in language. They argue per­

suasively that metaphors are not a matter of novelty, but are rather a conventional part of 

- 27-



our conceptual system. 

The knowledge-based computational approaches described here have been 

influenced by recent linguistic approaches to lexical semantics. The work of Lindner 

(1981), Brugman (1981) and Herskovits (1986) are studies of the semantic inter­

relationships among various polysemous senses of English prepositions. These studies 
have drawn heavily from the works of Talmy (1975), Fillmore (1982), Lakoff (1987), 

and Langacker (1987). Rather than merely asserting that there are separate homonymous 

senses of these words, these researchers have attempted to formulate a coherent semantic 
structure that accounts for the many related uses. One of the primary findings has been 

that conventional metaphor is one of the major phenomena underlying the structure of 

the lexicon. 

The work of Jacobs ( 1985) was the first computational approach that used the sys­

tematic representation of metaphoric knowledge to accomplish a natural language pro­

cessing task. Jacobs used the explicit representation of metaphoric knowledge to generate 

sentences containing conventional metaphors. Consider the following examples. 

(7) Ali gave Frazier a punch. 
(8) Ali took a punch from Frazier. 
(9) John gave Mary a kiss. 
(10) John gave Mary a massage. 

Each of these examples uses the idea of a transfer (giving and taking) to express 

concepts that actually involve no real transfer. Jacobs was concerned with developing a 

representation that could efficiently capture the generalizations exhibited by these kinds 

of examples, and also be used to generate examples like these when the target concepts 

themselves do not involve a transfer. Jacobs proposed that an explicit knowledge struc­

ture be used to represent the following conventional metaphorical facts. 

Actions may be viewed as transfer-events with the actor playing the role of 
source, the object playing the role of the recipient, and the action itself playing 
the role of object. 

Norvig (1987) used similar metaphorical structures in his FAUSTUS text­

inferencing system to demonstrate how metaphorical utterances could be successfully 
interpreted using metaphorical associations. However, his system only applied this meta­

phorical knowledge when the KODIAK equivalent of a selection restriction violation 
was detected in a literal interpretation. Therefore, even though his system had knowledge 

of conventional metaphors, it was still subject to some of the same problems of previous 

systems in detecting metaphors in the absence of constraint violations. 

The representation used in both of these efforts centered around the use of a set of 

hierarchically organized structured associations between the various source and target 

concepts of the conventional metaphors in the language. These structured associations 
were implemented using the VIEW mechanism of KODIAK (\Vilensky 1986). A VIEW 

is a means of representing non truth-conditional facts as an explicit part of the knowledge 

- 28-



that is represented about concepts in the knowledge base. These conventional conceptual 

metaphors are, therefore, directly represented as part of what is known. The representa­

tion used in this thesis is an extension to, and refinement of, these structured associations. 

Chapter 4 will give the details of the structures used in this thesis, and how they differ 

from these previous formulations. 

2.3. Word Sense Acquisition 

There have been a number of computational research efforts concerned with the 

problem of learning the meaning of new words. While none of these efforts directly 

address of the problem of metaphor, the approach they have taken is related to some 

metaphor understanding efforts. The efforts of Granger (1977), Selfridge (1981 ), and 

Zemik (1987) have all been attempts to learn the meaning of new words and phrases by 

using the context in which the use occurred. Each of these approaches had a different 

focus. Granger was concerned with determining the meaning of an unknown word dur­

ing the script-based processing of a story. Selfridge was concerned with modeling early 

stages of language acquisition in children. Zemik's system acquired a hierarchical 

phrasal lexicon capturing idioms. 

What these efforts share is the way in which context is used. In each case, the 

learning program was provided with an unknown word or phrase and a conceptual 

representation of some piece of text which already includes the meaning of the unknown 

word. The fundamental assumption of these efforts is that the learner has been able to 

determine the meaning of the word by some extra-linguistic means. The problem for the 

learner is to produce a pairing that links the unknown word to the correct concept already 

active in the context. This approach is similar to that used by Wilks (1978) for determin­

ing the meaning of metaphorical uses of known words using his pseudo-texts. 

The approach taken in this thesis to learning new metaphors deliberately avoids the 

use of this kind of unrestricted contextual information. MIDAS relies on the semantic 

structure of its existing metaphoric and conceptual knowledge to determine the possible 

meaning of a new use. Chapter 6 gives the full rationale behind this approach and how it 

relates to these context approaches. 

-29-



Chapter 3 

Conventional Metaphoric Knowledge 

3.1. Introduction 

A major claim of this thesis is that knowledge about conventional metaphors should 
be represented declaratively. This chapter is an analysis of conventional metaphors that 
will illustrate exactly what needs to be captured by such a representation. Chapter 4 will 
describe the actual knowledge representation used to capture these facts. 

This chapter will first discuss the basic requirements for representing individual con­
ventional metaphors. It will then go on to show that our knowledge of the metaphors in 
the language cannot be adequately captured by merely listing the details of each one indi­
vidually. The set of metaphors in the language, taken as a whole, demonstrates certain 
regularities. In order to see these regularities, groups of related examples must be 
analyzed. This chapter will, therefore, consist of a series of analyses demonstrating these 
regularities. 

The format of this chapter consists of a series of analyses of the regularities exhi­
bited by various conventional metaphors. For each phenomenon, a set of examples is 
given; a statement and analysis of the phenomenon in terms of its implications for a 
representation is given, and finally some suggestions are made for a represeptation that 
might adequately account for this regularity. 

3.2. Conventional Metaphorical Meaning 

A conventional metaphor consists of sour~e anc :arget concepts. The target - 'ncept 
is the concept mat is actually under considemtion. 1e source specifies [,1e cone pts in 
terms of which the target is being viewed. Consider tne following example. 

(1) Mary gave John a cold. 

- 30-



' 

This example involves the conventional metaphor that to give someone a cold 

means to infect them with a cold. This metaphor will be referred to as the Infecting-As­

Giving metaphor. The target concepts of this metaphor involve colds and the actions and 

events that lead to them. The source concept is giving. What is required is a way of 

determining the proper correspondence between these source and target concepts. In this 

case, there must be a way of representing the fact that the giving refers to an infecting, 

and not to any of the other many concepts associated with colds. This correspondence 

can be accomplished by directly representing an association between these concepts in 

the knowledge base. 

This single association, between the main source and target concepts, is not 

sufficient by itself to capture all that needs to be captured. The concepts of giving and 

infecting are complex concepts consisting of many sub-parts. For example, a giving may 

be said to be an action involving a giver, a recipient, an object given, and some results. 

The primary results are that the recipient now has the given object and that the giver no 

longer has possession of the object. Similarly, the infecting concept has an infected per­

son, the person who was the source of the infection, the infection itself, and the state of 

being infected. A set of associations are needed to provide the proper correspondences 

between the various sub-pans of the designated source and target concepts. In this case, 

the main association is from the concept giving to the concept of infecting. Associations 

related to this main one are: the giver is the infector, the recipient of the giving is the per­

son infected, the object transferred plays the role of the infection itself and the result of 

the giving (the recipient possessing the object) is the result of the infecting. 

The fundamental requirement of the representation, therefore, is to be able to 

represent these sets of explicit associations between complex source and target concepts. 

The representation must capture both the individual associations and the grouping of 

these associations into coherent metaphors. This requirement is summarized as follows. 

Fundamental Representational Requirement: Conventional metaphors must 

be explicitly represented as coherent sets of associations between source and 

target concepts. 

The following sections will examine some of the regularities that are exhibited 

among groups of metaphors. The ability of the representation to capture these inter­

metaphor regularities will flow from the representation of the conceptual associations 

used to satisfy the Fundamental Representational Requirement. 

3.3. Extended Metaphors 

Consider the following example: 

(2) Mary has a cold. 

- 31 -



Among the source target associations underlying this metaphor are the associations that 

to be infected with a disease is to possess it and that the infection is an object. These 

same associations were proposed as a part of the explanation for (1). The perceived rela­

tionship between these two metaphors arises from the fact that the definition of the 

Infecting-As-Giving metaphor includes the Infected-State-As-Possession metaphor as an 

important component part. 

It seems, in fact, that the Infected-State-As-Possession metaphor is in a sense the 

more fundamental of these two. It is simpler and can stand on its own without the 

Infecting-As-Giving metaphor. It can for example be used to express infection with 

diseases for which there is no notion of transfer, as in (3). 

(3) Mary has Alzheimer's disease. 

However, the Infecting-As-Giving metaphor is completely dependent on the Infected­

State-As-Possession metaphor in order to make sense. It seems, therefore, that the 

Infected-State-As-Infection metaphor motivates the corresponding transfer metaphor 

underlying (1). 

The following sections will show that this kind of inter-metaphor relationship 

arises from the structured sharing of sub-parts by the related metaphors. In particular, it 

will show that sets of related uses like (1) and (2) always seem to share a more simple 

common metaphor. 

3.3.1. Core Structures 

Consider the following examples. 

(4a) John gave Mary a book. 
(4b) Mary has a book. 
(4c) Mary got a book from John. 

(5a) Mary entered the room. 
(5b) Mary is in the room. 
(5c) Mary exited the room. 

(6a) Mary killed John. 
(6b) John died. 

(7a) Mike opened the door. 
(7b) The door is open. 
(7c) Mike closed the door. 

The italicized words within each example make reference to a closely intercon­

nected set of underlying concepts. Words like these, whose meanings are closely related, 

- 32-



are said to be core-related. Intuitively, words are said to be core-related if their mean­

ings make reference to a common set of concepts. This section will establish the require­

ments for determining core-relationships among concepts. 

Consider the concepts underlying the use of the words give, have, and get in Exam­

ple (4). The meaning of the word have as used in (4b) refers to a state of being in posses­

sion of some object. The meaning of give in (4a) refers to an action that results in a pos­

session of an object. Similarly the use of get in ( 4c) also results in a possession but 

focuses more on the event as something happening to the recipient rather than an action 

by the original possessor. (The use of get in (4c) is actually ambiguous. The reading 

referred to here can be paraphrased as received from, as opposed to the sense meaning 

went and got from). Clearly, the meanings of both give and get make direct reference to 

the notion of possession underlying the use of have in (4b). 

In a sense, the concept of possession underlying having is wholly contained within 

the concepts giving and getting. This reflects the underlying fact that an adequate under­

standing of the concepts of giving and getting presumes an understanding of the concept 

of possession. This kind of direct reference to, and joint sharing of, core concepts like 

having will be used to account for the perceived closeness of the words in all of the 

above examples. In particular, it lies at the core of the definition of what it means to be 

core-related. 

hold: 
Formally, two words can be said to be core-related if the following two conditions 

Relation Condition: The definition of one of the words makes direct refer­

ence to the definition of the other word. 

Containing Condition: All of the sub-parts of the referenced definition are 

contained as sub-parts of the referring definition. 

We can now say that give and have are core-related because both of these condi­

tions hold. The Relation Condition holds because the concepts underlying give specify 

that the result of a giving is a having. The Containing Condition holds because all the 

sub-parts of having play integral roles in the definition of giving. In particular, the reci­

pient of a giving is a haver and the given object in a giving is a thing had. A similar 

analysis accounts for the core-relatedness of get and have. In examples (4) through (7) 

the following pairs of words satisfy these two requirements: give and have, get and have, 

enter and in, exit and in, kill and die, open and opened, and finally closed and open. 

Note that the analyses of the core-relations among enter, exit, in, and out is slightly 

more complex than the possession examples. The notions of being enclosed or unen­

closed (in or out) relative to some enclosure are equally fundamental. The concepts 

underlying the words enter and exit satisfy the Containing Condition with both the idea 

of being enclosed and unenclosed. This example illustrates the case where a set of 

closely related core concepts underlies a set of core-related concepts. A similar situation 

holds for the open and close examples relative to the equally core concepts of being in an 

- 33-



open or closed state. 

Finally, consider the relationship between the meanings of the words give and get. 

The concepts underlying give and get are not directly related in the same way that give 

and have are. Instead, they are indirectly related by virtue of the fact that they have the 

concept having in common. They are both directly related to having, and contain it as a 

part of their individual definitions. This sharing of important sub-concepts yields a rela­

tionship called a intermediate core-relation. Two words may be said to be intermediate 

core-related if they are both core-related to the same third concept. In this case, give and 

get are both core-related to have since they satisfy both the Relation and Containing con­
ditions. This sharing yields the following condition that must be satisfied for intermedi­

ate core-relatedness. 

Shared Intermediate Condition: Two words may be said to be core-related if 
they both satisfy the Relation and Containing conditions with a third concept. 

This condition accounts for the close relationship among words that make reference 

to common concepts in their definitions. In examples (4) through (7), the following pairs 

of words are core-related because they satisfy this condition: give and get, exit and enter, 

and finally open and close. 

The fundamental phenomenon captured by the Relation, Containing, and Shared 

Intermediate conditions is the idea that a sharing of important core concepts underlies the 

perceived relationships among the words in (4) through (7). In each case, the concept 

underlying the word makes direct reference to the core, either as the definition of the 

word itself or as an important component. 

3.3.2. Metaphor and Core Structures 

Now consider the following metaphorical uses of the same words considered in 
examples (4) through (7). 

(8a) John gave Mary a cold. 
(8b) Mary has a cold. 
(8c) Mary got a cold from John. 

(9a) Mary entered emacs from the shell. 
(9b) John is in the editor. 
(9c) Mary exited the editor without saving her files. 

(lOa) You can kill a process by typing kill process-id to the shell. 
(lOb) My emacs just died. 

- 34-



(lla) You have to open a file before you can access it. 

( 11 b) The file is open for read access. 
(llc) The file will not be written until it is closed. 

The phenomenon illustrated by these examples is that the conventional metaphori­

cal use of these words partially preserves the core-relationships established among the 

words in the source domain. This preservation of core-relations is captured by the fol­

lowing principle. 

Metaphor Preservation Principle: The metaphorical use of core-related words 

in a given target domain will hierarchically preserve the core-relationships 

established among the corresponding words in the source domain. 

This section will illustrate the nature of this metaphorical preservation of core­

relationships. In particular, each of the three core-relatedness conditions will be exam­

ined to see how it is preserved metaphorically. 

Consider the metaphorical uses of give and have in (8). The Relation and Contain­

ing Conditions are satisfied between the target concepts of these metaphors in ways that 

directly reflect the core-relationship between the source concepts. The core-relationship 

established between give and have in the source domain was based upon the direct result 

relationship between the action of giving and the resulting state of having. This direct 

relationship satisfied the Relation Condition. The Containing Condition was satisfied 

because all the sub-parts of the having concept played roles in giving. The target con­

cepts in (8) exhibit a similar structure. The target concept underlying the use of give in 

(8a) is an action that results in a person being infected with a cold. This resulting state of 

infection also plays the role of the target in the use of have in (8b). In a similar fashion, 

the sub-concepts of an infected-state play an integral role in the definition of the action of 

causing an infection. The Relation and Containing Conditions, therefore, hold between 

the target concepts of give and have in (8), in the same way that they hold between the 

source concepts. 

Finally, consider the relationship between the metaphorical use of give and get in 

(8). In the source domain, these were core-related because they satisfied the Shared­

Intermediate Condition. This condition was satisfied by virtue of t~eir common connec­

tion to the concept having. The metaphorical uses of give and get are also core-related 

because of the Shared-Intermediate Condition. They share the common core concept of a 

person being in an infected-state. This infected-state is the metaphorical equivalent of the 

core possession concept in the source domain. 

3.3.3. Structure of Extended Metaphors 

The previous section discussed how the metaphorical use of core-related words in 

a target domain will preserve the core-relationships established among the corresponding 

- 35 -



words in the source domain. This section will show how this preservation of core­
relationships is directly reflected in the representation of conventional metaphors. 

In the discussion of (8), it was shown that the concepts of possession and infection 
formed the core source and target concepts in a set of related uses involving the words 
give, get, and have. The Infection-As-Possession metaphor is the explicit representation 
of the metaphor that associates these core source and target concepts. In the same way 
that possession and infection lie at the core of a set of source and target concepts, the 
Infection-As-Possession metaphor forms the core of a set of related metaphors. In partic­
ular, it lies at the core of the metaphorical uses of give, have, and get from (8). The 
explicit representations of the Infecting-As-Giving and Become-Infected-As-Getting 
metaphors make use of the Infection-As-Possession metaphor in a way that mirrors the 
core structuring in the source and target domains. 

This common shared metaphor will be referred to as a core metaphor*. 
Correspondingly, an extended metaphor is a metaphor that includes all the associations 
of a core metaphor and adds new associations that coherently extend the core metaphor. 
Table 1 gives some examples of core metaphors and various extensions to them. 

For example, consider the core metaphor Process-As-Living-Thing. This core meta­
phor is the basis for the extended metaphors Terminating-As-Killing and Termination­
As-Death. In general, the Process-As-Living-Thing metaphor is used to structure the 
actions that processes perform and the actions that are performed upon them. The 
Termination-As-Death metaphor structures the target concept of termination in terms of 
the death of a living thing. The corresponding Terminating-As-Killing metaphor allows 
the actions that cause the termination to be viewed as a killing (an action that causes a 
death). The Process-As-Enclosure metaphor is a distinct core metaphor that also struc­
tures some kinds of processes. It primarily structures the target concepts of actively 
using a process, starting to use a process, and finishing the use, in terms of entering, 
being enclosed within, and exiting. In each of these cases, the extended-metaphor con­
tains the core-metaphor and extends it with the addition of further associations. 

The combination of the Core-Relation Conditions with the Metaphor Preservation 
Principle gives rise to a corresponding set of well-formedness conditions for extended 
metaphors. More precisely, a core metaphor extends to another metaphor if it meets the 
following three requirements. 

Subset Requirement: The extended sense must contain all the core associa­
tions as a subset of its associations. 

Closeness Requirement: The source and target concepts of the additional 
associations must be "closely connected" to the source and target concepts 
specified by the core associations. 

• The term core·metaphor, and the underlying idea, resulted from long discussions with Robert Wilensky. 

- 36-



Core- Infection-As-Possession --7 Mary has a cold. 

Extensions 

Becoming-Infected-As-Getting --7 John got his cold from Mary. 

Causing-Infection-As-Transferring --7 Mary gave John a cold. 

Core - Process-As-Living-Thing 

Extensions 

Terminating-As-Killing --7 How can I kill a process? 

Termination-As-Death --7 My emacs just died. 

Core- Process-As-Enclosure 

Extensions 

Using-Process-As-Enclosed-State --7 You can edit files when you are in the editor. 

Invoking-Process-As-Entering --7 You can get into lisp by typing lisp to the shell. 

Uninvoking-Process-As-Exiting --7 How can I get out of lisp? 

Table 1: Core and Extended Metaphors 

Coherence Requirement: The new source and target concepts must be con­
nected to the core source and targets in a coherent manner. 

In effect, these requirements force the representation of core-related metaphors to 
reflect the core structure inherent in the source and target domains. 

The Subset Requirement ensures that the definition of the extended metaphor 
includes all the associations of the core metaphor. This requirement arises from the fact 
that it is the entire set of associations in the core metaphor that gives the metaphor its 

- 37-



meaning. A metaphor is not an extension to another if they merely share some of the 

same maps. 

The Closeness Requirement is a constraint on the additional maps that are added 

by the extended metaphor. The source and target concepts of the additional maps must 

be closely related to the source and target concepts in the core-metaphor. This require­

ment basically says that the additional concepts must be closely tied semantically to the 

core concepts. The details of how this requirement will be enforced are discussed in 

terms of the details of the representation in the next chapter. 

The Closeness Requirement says that the new source and targets must be conceptu­
ally connected to the ones originally specified by the core metaphor. The Coherence 
Requirement further specifies that the relationships that r · ,-; between the old and new 

concepts in the source and target domains ~1ust be cohere , Ith one another. Two rela­
tionships from different domains may be ~ .. id to be cohere .. • if they can be shown to be 

"fundamentally the same" at some level of abstraction. The Coherence Requirement fol­
lows directly from the Metaphor Preservation Principle, which predicts that extended 

metaphors will preserve relations from the source to target domain. 

Consider, as a concrete example, the Causing-Infection-As-Transferring extension 
to the Infection-As-Possession metaphor. The core metaphor contains the associations 

that an infection is an object and that possession is a state of being infected. The 

extended metaphor satisfies the Subset Requirement since it contains the following core 

associations: the infection is the transferred object and the resulting state of infection is 

the possession resulting from the giving. 

The Closeness Requirement is fulfilled because the source and target concepts 
added by the extended metaphor are conceptually close to : ; original source and targets 

of the core metaphor. In the source, the additional metaphorical concept is a transfer of 

possession. This is an action that results in the original source concept of possession. 

The core and extended source concepts are therefore related by a single relation. The tar­
get domain extends in a similar fashion. The original target concept involves an 

infected-state. The additional concept is an action that results in an infected-state. There­

fore, both the source and targets of the extended metaphor are connected to the original 

metaphor by being actions or events that result in a state that is a part of the core meta­
phor. 

The Coherence Requirement is also satisfied because the source and target concepts 

are extended in a similar fashion. In both the source and target domains, the extended 

concepts are related to the core concepts by a result relation. While the exact details of 

these result relationships differ, they are at a higher level of abstraction the same relation. 

The Coherence Requirement is therefore satisfied. 

The Core-Relation Conditions, Metaphor Preservation Principle, and Extended 

Metaphor Requirements are criteria derived from an observation of typical kinds of con­

ventional metaphors in the language. They are intended to perform two tasks. The first is 

to help capture the conceptual structure underlying the system of conventional metaphors 

- 38-



in the language. The second is to provide a formal basis upon which programs that inter­

pret and learn conventional metaphors can be built. Chapters 5 through 9 will show how 

programs that exploit the constraints imposed by these criteria can successfully perform 

these interpretation and acquisition tasks. 

3.3.4. Representational Requirements of Extended Metaphors 

We are now in a position to consider the implications of these extended metaphors 

for the representation. The most important requirement implied by the core-structuring 

of extended metaphors is that the representation must facilitate the sharing of component 

metaphorical associations among related senses. In the previous section, it was sug­

gested that the metaphors themselves must be represented at the level of complex con­

cepts. The requirement raised here for sharing implies that the component associations 

themselves be raised to the level of independent concepts. These independent concepts 

can then be shared by the various related senses that have common component associa­

tions. 

This sharing, of what in a sense are reified associations, must be augmented by 

another facility. The related senses discussed in this section actually contain associations 

that are of the same kind but are not identical. The associations in the extended senses 

are usually specialized versions of the ones inherited from the core sense. For example, 

the core metaphor underlying Process-As-Living-Thing merely specifies that the process 

be viewed as a living thing. In example (4), this association is further specialized to be 

one that views a terminated process as a living thing being killed. Similarly, in the 

extended Transferring-As-Infecting metaphor, the original core association merely 

specified that the infection is viewed as a possession. In the extended metaphor, this asso­

ciation is further specialized to be a possession that is capable of being transferred. The 

other extended examples all contain similar examples of core associations being further 

specialized in the extended senses. 

This type of sharing suggests a representation in which concepts can inherit and 

specialize attributes. In the case of component metaphorical associations, it should be 

possible to inherit and specialize the source and target restrictions posted in the core 

metaphors. In extended metaphors, the specializations will always involve adding res­

trictions that specify the role that the concept plays in the extended sense. In example (4), 

the added restrictions specify that the process plays the role of the victim of the killing. 

The final requirement suggested by the extended metaphor phenomenon arises 

from the proposed extension requirements. In order to make judgments based on these 

rules it must be possible to answer questions concerning conceptual closeness and types 

of inter-connection within source and target domains. In other words, it must be possible 

to determine that two source or target concepts are closely connected and what the exact 

nature of the connection is. 

The discussion up until now has been concerned with the representational 

- 39-



requirements of the metaph0rs themselves. Of course, the representation of the source 
and targets themselves is c. .ical to the representation of the metaphors. It has already 
been suggested that individual metaphors and their component associations should have 
the status of full-fledged concepts. The current needs suggest that as much as possible 
the non-metaphorical concepts that serve as the source and targets of metaphors should 
also have this object-oriented flavor. 

In particular, to make judgments based upon the Relation and Containing Condi­
tions it must be possible to answer questions about both the fine-grained structure within 
concepts and the relations that link separate concepts. Consider the giving concept dis­
cussed above. During the course of the discussion of the core-relationships of this con­
cept and its metaphorical uses, it was necessary to make assertions about the following 
concepts: the giver, recipient, given-object, and the relationship of this concept to others 
like having and getting. These concepr' nd relations should exist at the level of full­
fledged objects in order to easily make J~, gments about them. In particular, the Exten­
sion Requirements nec'!ssitate that it be possible to make judgments of type, closeness, 
and identity among these concepts. Chapter 4 will discuss how this representation is 
achieved. 

3.4. Metaphor Hierarchies 

As mentioned above, the representation of metaphoric associations must be able to 
accommodate the use of essentially the same associations in extended metaphors. It has 
been shown that, in these extended senses, the shared associations must be further spe­
cialized. This section will discuss a 'iifferent phenomenon that will independently sug­
gest a hierarchical representation fo: .omponent metaphorical associations. Consider the 
following examples. 

(12) How can I kill a process? 
(13) Those ideas won't bear any fruit. 
(14) Inflation is eating up our savings. 

Each of these metaphors consists of a distinct set of component metaphorical associ­
ations. Unlike the examples in the previous section, one would not say that these are 
examples of extensions from the same metaphor. The source and target concepts of these 
examples are too dissimilar. However, each example does involve a component associa­
tion that links an abstract concept that is not alive with a kind of living thing. This struc­
turing allows us to understand some aspect of the target domain in terms of a source con­
cept normally associated with living things. In (12), as explained above, a process is 
viewed as a living thing, allowing termination to be viewed as killing. In (13), ideas are 
metaphorically viev. ed as plants, allowing the creation of new ideas from old ones to be 
viewed as producing fruit. Finally in (14), inflation is viewed as something that can eat, 
allowing the relative reduction in savings by inflation to be viewed as a kind of consump­
tion. 

-40-



Each of these underlying associations is different in the specifics of the panicular 

source and target concepts used. However, they all associate an abstract non-living thing 

with a specific kind of living thing. This suggests the idea that these associations should 

be represented at the level of full-fledged objects. This will allow them to be included in 

abstraction hierarchies. Abstraction hierarchies can efficiently handle the kind of sharing 

that these associations seem to exhibit. The commonalities among the various associa­

tions are captured by creating a more abstract association between the proper abstract 

source and target concepts. In this case, an association linking a concept representing 

living things with another concept representing non-living things is created. The panicu­

lar associations underlying (12) through (14) can then inherit and specialize the source 

and target components of the more abstract association. This use of hierarchies is the 

fundamental mechanism that will be used to account for subtle similarities and differ­

ences among metaphors. 

3.5. Similarity Among Metaphors 

The previous section discussed some of the similarities among the building block 

associations from which metaphors are constructed and how these similarities might be 

captured by a hierarchical representation. This section addresses the issue of overall 

similarity among metaphors. In panicular, it will show that by elevating metaphors and 

their component associations to the level of concepts, a wide range of phenomena gen­

erally referred to as similarity as can be accounted for. 

Consider the following examples. 

( 15) Mary gave John a cold. 
(16) Mary gave John the flu. 

On the surface these seem like two distinct highly similar metaphors. In panicular, while 

they have the same source concepts, they have different target concepts. However, it 

would not be correct to represent these as two separate metaphors, even though they have 

different targets. The two target concepts are both instances of the more general category 

corresponding to something like communicable disease. 

A single metaphor with a target concept represented at the level of communicable 

disease best captures Examples (15) and (16). The specific target concepts, infecting with 

a cold and infecting with the flu, are represented as members of a more general infecting 

with a communicable-disease category through the use of an abstraction hierarchy. This 

representation allows us to represent the metaphor at a correct level of abstraction and 

still arrive at an appropriately specific interpretation with little effort. 

Now consider the following examples: 

(17) How can I kill a process? 
(18) John killed the conversation by walking in the room. 

- 41 -



While one would not ordinarily say that conversations and processes are similar, they do 
share some significant elements that are referred to by this metaphor. The shared ele­
ments focussed on in these examples have to do with these concepts being events that 
occur over time that can be terminated. These shared elements are inherited from the 
fairly abstract concept of event or activity. 

In a sense, these metaphors are creating a similarity by focussing on those aspects 
of the concepts that are shared. These common features are represented as explicit rela­
tions and concepts that the two target concepts have in common. As with the previous 
examples, the representation must be flexible enough to permit the metaphor to be 
represented at the correct level in the hierarchy with respect to these common elements. 
In this case, the metaphor should express the notion that killing can be used to view an 
abstract event corresponding to termination. This abstract concept of termination must 
be related hierarchically to the specific concepts of terminating conversations and com­
puter processes. 

In the following examples, a more distant kind of similarity is considered. 

(19) Mary gave John an idea. 
(20) Mary gave John a cold. 

In these examples, the target concepts are completely distinct. Independent of any meta­
phorical associations, ideas and colds are not significantly related conceptually. The pro­
cess of coming to have an idea has little in common with the concept of becoming 
infected with a disease. Nevertheless, the metaphors share the basic structure of viewing 
a set of actions by one participant leading to a change in another participant as a transfer 
to that participant. In addition, in both cases, an abstract concept is being viewed as an 
object that can be transferred and possessed. This abstract metaphor corresponds to the 
Transfer-As-Act-Upon metaphor described in Jacobs (1986). 

An important trade-off issue is raised by the existence of these highly abstract meta­
phors. In ?articular, consider the situation where the Transfer-As-Act-Upon metaphor is 
applied d_ ~ctly in an attempt to understand (20). The result of this is an abstract target 
concept representing the idea that Mary acted upon John in a way in which a cold played 
some role. This is clearly not an adequate interpretation. Some further infer~nce process 
is needed to replace this concept with a more appropriate specific concept indicating that 
an action took place that resulted in Mary's being responsible for John becoming 
infected. The problem is that this further specialization inference may be computation­
ally very expensive to perform. In general, the more abstract the representation of the 
metaphor, the more expe :ve it is to arrive at an appropriately specific target representa­
tion. Therefore, the goal .. capturing these abstract generalizations seems at odds with 
the goal of providing appropriately useful knowledge. 

Consider the alternative situation where the more specific Infecting-As-Giving 
metaphor, suggested for examples (15) and (16), is applied. The use of this more specific 
metaphor leads to an appropriate target concept much more directly. The trade-off 

-42-



therefore arises from the representation and use of these abstract metaphors. A system 

that merely represents specific uses does not capture any generalizations, and therefore 

cannot easily accommodate new examples. On the other hand, the actual use of highly 

abstract metaphors is more computationally expensive. Braverman (1988) discusses the 

general trade-off issues implied by this generality versus operationality issue. 

The solution taken in this thesis is to represent both specific and abstract metaphors 

in an abstraction hierarchy. The most specific metaphor that can be applied is the one 

selected for use during normal processing. The existence of higher level abstract meta­

phors, in the same hierarchy with more specific instances, facilitates the interpretation of 

new uses. Chapter 7 will illustrate how these abstract metaphors can be used in conjunc­

tion with more specific metaphors to learn new uses. 

3.6. Challenges to Metaphorical Regularity 

A natural issue to consider in light of the regularities described here is that we must 

be able to explain those uses that seem like they should plausibly work, given a core 

metaphor and a proposed target, but clearly do not. These missing metaphors might pose 

a significant problem for a theory that asserts that conventional metaphors are not simply 

random idioms, but rather arise from systematic conceptual structures. 

Consider the following examples. 

(21) How can I kill a process? 
(22) *How can I give birth to a process? 
(23) *How can I slay a process? 

(24) John gave Mary a cold. 
(25) *John donated his cold to Mary 
(26) *John took Mary a cold. 

(27) Mary caught a cold from John. 
(28) *John threw Mary his cold. 

Within each set of examples, the first example results from a valid use of a previously 

discussed conventional metaphor. The remaining examples, within each set, seem plausi­

ble given the related known metaphors but simply don't work. These kind of examples 

undermine the assertion that metaphors are the result of underlying conceptual structures 

and are not arbitrary uses. 

Consider again the core-metaphor of a Process-As-Living-Thing metaphors that 

underlies (21). It was shown in Section 3.3.3 that the actions and events that lead to the 

termination of processes can be viewed as killing and dying. It would seem plausible to 

suggest that the actions by a user leading to the creation of a process might be structured 

- 43 -



in terms of birth events. It seems, however, that this is not the case. In panicular, (22) 

does not seem to work very well to convey the idea of creating a process. 

It can, however, be shown that the reason for these failures is not inconsistent with 

the regularities described in this chapter. In panicular, this use fails to meet some of the 

extension requirements set forth in Section 3.3.3. Consider the actual details underlying 

(22). The target concept of creating a process seems to be cognized as a simple action by 

a user that results in the creation of a process. In order for there to be a coherent exten­

sion from the core metaphor, there would have to be a corresponding simple action by an 

actor that results in the creation of a living-thing. The complex concept of a birth-event 

does not meet this requirement. There is no single action causing the final result. Rather, 

it is a complex series of events involving several panicipants. A birth metaphor would, 

therefore, have to map the simple target action to a set of source events. 

Another serious mismatch between the create concept and the birth concept involves 

the restrictions on the creator and the mother (the panicipant giving birth in the birth 

event). The birth event has the restriction that the created thing and the mother are the 

same type of entity. This does not correspond to the target domain adequately. The gen­

eral concept of creation that dominated process creation does not assume or require any 

type of connection between the thing created and the creator. The process is thought of 

as being created by the user not by another process. The net result is that the connection 

between the core metaphor and the target concept of the creation of a process does not 

match the connection from the core to the source concept of birth in a consistent enough 

manner to allow this use. 

Consider, however, the fact that conventional UNIX language does permit the use of 

spawn a process to refer to the creation of a process by some other process. In this case, 

the semantics of the source concept of spawn does not involve the mismatches with the 

target concepts that occurred with (22). In panicular, the concepts underlying spawn 

seem to be simpler then the concepts underlying give birth to. Spawn focusses only on 

the final act of releasing the young and not to the entire process. In addition, the seman­

tics of the target concepts in this use does not have the type mismatch noted above 

between the created thing and the creator. It is used here to refer to the creation of a pro­

cess by another process. 

A similar analysis rules out the prediction of throw in (28). This use seems to be 

predicted by (27). As initial analysis would assert that since catch a cold conventionally 

means to become infected then throw a cold should mean to infect. This analysis fails 

because of the simplistic analysis of the source domain of the known metaphor. In this 

case, the incorrect assumption would seem to be that this source use of care h is the sense 

that takes pan in the catch/throw pairing. It seems instead that this use involves one of 

tl· many senses of catch that does not relate to throw at all. In panicular, the non­

v~..ational nature of catch a cold seems to imply that the most likely use is the sense 

underlying (29). 

(29) John caught his sleeve on a nail. 

-44-



This sense emphasizes the notion that the catching is an event that happens to someone 

without any effort or intention on the part of the catcher*. 

There is a common thread running through each of these analyses. In each case, 

minor meaning differences among words, and among senses of the same word, have 

important implications for the metaphorical uses of those words. In particular, these sub­

tle differences may prevent the extension of a core metaphor to what seems like a reason­

able use. The conceptual metaphors presented in this chapter are, therefore, regular and 

productive but they have very specific semantic conditions for their use. The missing 

metaphors in Examples (21) through (28), therefore, do not pose a challenge to the theory 

of metaphor presented here. Rather, the challenge they pose is to work out the subtle 

semantic inter-relationships among the meanings of the words in the language. 

3.7. Motivation 

The idea that subtle similarities and differences among the facts that are being 

modeled should be reflected in the representation is a fundamental one. It motivates 

most of the knowledge structures proposed in this chapter. This approach has two 

motivations. The first motivation follows from one of the basic motivations underlying 

the development of KODIAK. Wilensky's Cognitive Correspondence Principle (Wilen­

sky 1987) states that: 

A particular representation for a particular item must be supported by its 

correspondence to how that item is cognized. 

We take the empirical data provided by particular conventional metaphors to be evidence 

for how the underlying concepts are cognized, and are therefore represented. While the 

principle only addresses the representation of particular concepts, it follows that the 

similarities and differences among sets of facts must be represented as well. 

The second motivation for representing these similarities and differences is more 

immediate to this thesis. Chapter 6 will show how the explicit representation of these 

facts enables certain kinds of learning behavior. 

3.8. Summary 

This chapter provided an analysis of the characteristics of conventional metaphors 

that need to be captured by a knowledge representation. This analysis of individual 

metaphors and of sets of related metaphors produced the following four representational 

requirements. 

• The analysis of this sense of catch was suggested by Robert Wilensky. 

- 45-



Fundamental Representational Requirement: Conventional metaphors must 

be explicitly represented as coherent sets of associations between source and 

target concepts. 

Extended Metaphor Requirement: The representation of conventional meta­

phors must capture the fundamental phenomenon that a sharing of important 

core concepts underlies the perceived relationships among many separate 

metaphors. 

Sharing Requirement: The representation of the component associations of 

metaphors must facilitate the hierarchical sharing of these component parts 

among distinct metaphors. 

Similarity Requirement: The representation of conventional metaphors must 

capture the similarity relationships among metaphors. 

The Fundamental Representational Requirement addresses the need to account for 

the fact that these metaphors are conventional parts of the language. These metaphors 

can be accounted for by a knowledge-base containing sets of associations between source 

and target domains that are conventionally related. These associations must be specific 

enough to account for the particular details of individual metaphors. 

The remaining requirements arise from the desire to capture the systematlCitles 

among the set of metaphors in the language. These systematicities were explored by 

considering sets of seemingly related metaphors. In each case, the phenomenon was 

characterized and suggestions were made as to an appropriate representation. It was sug­

gested that both extensions to core metaphors and similarities among metaphors can be 

accounted for by a representation that permits the specialized sharing of component ele­

ments. In such a representation, both metaphors and their component associations are 

elevated to the status of concepts. A know ledge representation system that incorporates a 

system of hierarchical inheritance can account for this type of sharing. The next chapter 

will describe the details of the representation language that is used to capture the require­

ments posed by this analysis of conventional metaphor. 

-46-



Chapter 4 

Knowledge Representation 

4.1. Introduction 

Chapter 3 provided an analysis of conventional metaphor and provided some 

requirements for the representation of metaphoric knowledge. This chapter describes 

exactly how this task is accomplished. I first briefly describe KODIAK, which is the 

knowledge representation language used to accomplish this task. I then review the 

aspects of conventional metaphor that need to be captured, and show how this is accom­

plished using KODIAK. 

4.2. KODIAK 

KODIAK is a knowledge representation language developed by Robert Wilensky 

and various members of the BAIR group at Berkeley. The motivations for its develop­

ment and its theoretical underpinnings are best described in Wilensky (1986). The actual 

implementation described here is a modified version of the one developed by Norvig 

(1986) for the FAUSTUS text inferencing system. The description of KODIAK provided 

here will be brief, introducing only those ideas and notations needed in order to follow 

the rest of the thesis*. More details will be introduced along the way as necessary. 

KODIAK is best seen as an extended semantic network language in the tradition of 

KL-ONE and its variants. Facts in KODIAK are represented as nodes connected together 

with primitive links. The language provides three types of nodes and eight primitive 

kinds of links. Table 1 from Norvig (1986) gives a brief description of each node and 

link type. 

• KODIAK as a language and as a theory is in an almost constant state of flux. Therefore the details described here differ is 

detail but not in spirit from those described in Jacobs (1985), Wilensky (1986), and Norvig (1986). 

-47-



Absolutes - concepts, e.g. person, action, idea 
Relations- relations between concepts, e.g actor-of-acting 
Aspectuals - arguments of relations, e.g. actor 

Dominate - a concept is a sub-class of another class 
Instance - a concept is an instance of a class 
View - a concept can be viewed as another concept 
Constrain - fillers of an aspectual must be of some class 
Argument - associates aspectuals with a relation 
Fill - an aspectual refers to some instance 
Equate- two concepts are co-referential 
Differ - two concepts may not be co-referential 

Table 1: Primitives of KODIAK 

The three types of nodes or objects are absolutes, relations and aspectuals. Most 

concepts that intuitively are thought of as standing on their own are represented as abso­

lutes. This generally includes notions like physical objects, people, ideas, actions, events, 

and sets. Examples of absolutes that we will see are living-thing, person, action, giving, 

and having. The major concepts underlying the meanings of most nouns and verbs will 

turn out to be absolutes. 

Relations are concepts that are used to associate two objects. It is important to dis­

tinguish between relations and primitive links. A relation is a complex concept composed 

of nodes and links that is used to associate two other concepts. A primitive link is used to 

connect two nodes in the system. While there are only eight links known to the inter­

preter, the knowledge base may contain an arbitrary number of user-defined relations. 

The links in most simple semantic network systems would become relations in KODIAK. 

The final type of object is an aspectual. Each relation has two associated aspectuals 

that specify the range and domain of the relation. Consider the part-whole relation 

intended to associate concepts that are in a part-whole relationship. This relation has two 

related aspectuals corresponding to the part and the whole. 

Figure 1 shows the representation of the part-whole relation and two of the eight 

primitive links that will be discussed. The horizontal line in the center labeled part­

whole represents the relation. The two circles represent the aspectuals part and whole. 

The boxes represent absolutes that serve as the range and domain of the relation. The 

diagrams in this thesis will follow the following conventions: boxes are absolutes, circles 

are aspectuals, labeled horizontal lines are relations, primitive links are shown as arcs 

with single character labels. 

The arcs labeled a between the relation and its aspectuals are primitive links called 

-48-



Part-Whole 
c c 

Figure 1: Part-Whole Relation 

arguments. They are used to connect a relation to its attendant aspectuals. The links 

labeled C are used to connect an aspectual to the category that constrains that aspectual. 

This basically says that this aspectual is constrained to be a member of the constraining 

category. 

Figure 2 illustrates the use of inheritance in KODIAK. In this diagram, the has­

table-top relation is shown to be a kind of part-whole relation. The various vertical 

lines labeled D stand for dominate links. A dominate link specifies that the lower concept 

is a sub-class of the concept pointed at. In this example, we see that the has-table­

part relation and its aspectuals are dominated by the parent part-whole relation. In 

addition, the absolutes table and table-top are kinds of physical-objects. Dom­

inate links are therefore used to specify inheritance for absolutes, relations, and aspectu­

als. Dominate links are transitive; concepts inherit relations from their direct parent and 

all of the parent's ancestors. 

Another kind of inheritance link is the /, or instance, link. The I link is used to 

denote the fact that a concept is an instance of a category. Individual tokens of absolutes, 

relations and aspectuals are linked to their immediate parent via an I link. While the 

dominate link may be considered a subset relation, the instance link is an element-of 

relation. Another link, the F or filler link, goes along with this instance notion. The 

aspectuals of instances of relations are connected via F links to the instances that con­

strain them. The filler of an aspectual must satisfy all the constraints that the aspectual 

inherits from its parents. 

The =, or equate, link is used to assert that two concepts are co-referential. The 

equate link can hold either between absolutes or aspectuals. Corresponding to the equate 

link is the differs link that states that the two concepts may not be equated. 

The remaining link, the V, or view, link is used to assert that the one concept may 

in certain circumstances be considered as another. A V link is more complex than the 

- 49-



Physical-Object 

Part-Whole 
c c 

D 

D 

D D 

c 
Has-Table-Top c 

Figure 2: Has-Table-Top Relation 

links discussed so far and it will be discussed in greater detail in the following sections. 

The final concept introduced here is a notational one developed by Norvig (1986). 
This is the called the slot notation. It is frequently the case that when a relation between 
two absolutes is being shown, it is in terms of one of the absolutes relating to the aspec­
tual farther away from it. Consider Figure 3. This diagram shows a concept called a 
killing which is in a has-kill-victim relation to the category living thing. The 
related aspectuals are the killing-with-victim and the kill-victim. It will fre­
quently be the case that we are interested in only the role of the kill-victim. The slot 
notation handles this situation. The lower part of Figure 3 shows the slot abbreviation of 
the has-kill-victim relation. The relation and the aspectual closest to the concept 
with the slot are replaced by an S link. The remaining aspectual and its constrainer 
remain the same. Remember that this is only a notational convenience to reduce the 
complexity of the diagrams. The actual underlying representation remains in terms of 
relations, aspectuals, and argument links. 

A linear lisp-like notation will also occasionally be used to describe KODIAK 
structures. These will usually be used when illustrating actual output from various pro­
grams manipulating KODIAK structures. The Kill-Victim facts represented in Figure 

-50-



7 
Kill-Via®-Of-Kimng ""\ c 

s 
_______ c ____ ~,~----u-·v-in_g_-Th_m_· g----~ Killing 

Figure 3: Slot Notation 

3 are expressed with the following notation. 

(A Killing <i Action) 

(kill-victim <i patient) (A Living-Thing <i Thing)))) 

This notation indicates that a Killing is dominated by Action. It also has a slot called 

kill-victim, which is dominated by patient, and is constrained to be a Living­

Thing. 

4.2.1. Structured Associations 

The dominate, view, and instance links, described above, taken together are a 

primitive mechanism for providing inheritance. There is, however, a major problem with 

using them to provide a coherent inheritance mechanism. The problem arises from the 

fact that the individual links are highly local in nature; they link individual KODIAK 

objects. However, most meaningful concepts consist of sets of related concepts. 

Correspondingly, meaningful inheritance involves sets of related concepts being inher­

ited at the same time. The clearest example of this is illustrated in the specialization of 

relations. 

Consider again the specialization of the part-whole relation to the has-table­

top relation discussed above. The coherent specialization of this concept involves the 

- 51 -



three dominate associations shown in the center of the diagram. The link that dominates 

the has-table-top relation by the part-whole relation presumes that the correspond­

ing aspectuals will also be dominated. This follows from the fact that the relation cannot 

stand alone. The only means of specializing a relation is to further specify its aspectuals. 

What is required to capture this fact is a concept that ties all of these links together to 

indicate that they constitute a coherent set. 

This coherent inheritance is accomplished in KODIAK through the creation of a 

concept called a structured association*. A structured association is an absolute that con­

sists of a set of primitive inheritance relations. The structured association is related to 

these primitive relations via a set of component-association relations. A 

component-association relation is a relation that connects an inheritance relation to a 

structured association. In addition, one of the components is further marked as being the 

primary mapping to reflect the fact that the other associations follow from this one. In 

the has-table-top relation, the primary association is the one linking the part-whole 

relation to the has-table-top relation. Figure 4 shows the structured association 

corresponding to the has-table-top example. There are three component associations 

that are D links. The primary one linking the relations. 

More complex examples of structured associations will be given below in the dis­

cussion of the representation of conventional metaphors. In particular, structured associ­

ations consisting of sets of views will be used to represent individual conventional meta­

phors. 

4.3. Conventional Metaphorical Knowledge 

Chapter 3 provided an analysis of some of the characteristics exhibite.. :" conven­

tional metaphors. In addition, a number of general suggestions were made for representa­

tions that might capture these characteristics. This section will review these suggestions 

in terms of some examples and briefly indicate the KODIAK features used to capture the 

suggestions. The following sections will then give the exact details of each feature. 

The first requirement for the representation is to represent metaphors as concepts 

consisting of sets of associations between source and target concepts. Consider Example 

(1). 

(1) How can I kill a process? 

This example, from the UNIX domain, involves the conventional metaphor that to kill an 

"Previous formulations of KODIAK (Wilensky 1986, Jacobs 1985 and Norvig 1986) have employed a different mechan­

ism to accomplish the same effect as these explicit structured associations. A secondary link called a role-play was em­

ployed. The primary link was made a true relation and the rest were made dependent role-plays of that governing relation. 

The set of oomponent associations used here acoomplishes the same correspondence but by elevating the association to the 

level of a full-fledged concept a more uniform represenJ.ation is achieved. 

-52-



Hi-Table-Top 
tructurea 
SSOC18l10n 

Part-Whole 

0 D 

c 

D 

c 

c 

Figure 4: Has-Table-Top Structured Association 

8 
D 

ongoing process means to terminate it. The target concepts involve computer processes 

and the actions that terminate them. The source concept is that of the action of causing a 

living thing to die. The metaphor consists of the source, target, and the set of associa­

tions linking them. 

Conventional metaphors like this one are captured in KODIAK through the use of 

the structured association mechanism. A structured association, called a metaphor-sense, 

is created to represent the metaphor itself. The component associations consist of meta­

phoric VIEW relations called metaphor-maps. These metaphor-maps are the associations 

used to connect source and target concepts. Moreover, these relations are given the status 

of full-fledged concepts, since relations in KODIAK are concepts. 

The next set of requirements for KODIAK were suggested by the extended meta­

phor phenomena. Consider the following examples from Chapter 3. 

(2) Mary has a cold. 
(3) John gave Mary a cold. 

We need to be able to represent the fact that the giving metaphor underlying (3) is 

-53-



extended from the core possession metaphor motivating (2). This extended metaphor is 

accounted for in KODIAK by two mechanisms. The first is that the concepts representing 

these two metaphors are directly linked by a relation that specifies the giving metaphor as 

an extension of the possession metaphor. The second mechanism accounts for the shar­

ing of component associations discussed in the previous chapter. As mentioned above, 

the component associations of the metaphor are relations and can, therefore, be special­

ized in the normal fashion. The extended sense, therefore, shares the associations from 

the core by using further specified children of the core associations. 

The rest of the similarity phenomena from Chapter 3 are all accounted for by these 

same mechanisms. The basic approach is that metaphor-senses and metaphor-maps are 

full-fledged KODIAK concepts and, therefore, all the various similarities and differences 

can be accounted for by the basic KODIAK inheritance mechanisms. 

The following sections will introduce the various mechanisms that will be used to 

both represent the specific details of individual metaphors and capture the necessary gen­

eralizations. 

4.4. Representing Conventional Metaphors 

Figure 5 shows the KODIAK representation of the source domain from (1). It 

states that a killing is a kind of action with a result that is a death-event which 

is in turn an event. The kill-victim of the killing is an inherited role from 

action indicating that the kill-victim is effected by the action. The kill-victim is 

constrained to be a living-thing and the killer must be an animate-agent. Finally 

the equate links require that the kill-victim must be rhe same as the dier participant 

ofthe death-event. 

Figure 6 shows the corresponding concepts from the target domain. It states that a 

terminate-process-action is a terminate-action which is a kind of action. The 

terminated-process role is an inherited role specifying the patient of the action. The 

result of the action is a terminate-process-effect which is a kind of terminate­

event. Finally, the terminated-process is equated to the terminated-process­

event of the terminate-process-effect. This is analogous to the- relationship 

between the kill-victim and the dier shown in Figure 5. 

What is needed is a way of associating the appropriate source and target concepts. 

Such an association is realized in KODIAK by using a relation called a metaphor-map. 

A metaphor-map is a kind of VIEW relation whose aspectuals specify corresponding 

source and target concepts. Figure 7 shows the details of one of the metaphor-maps, the 

killed-process map that underlies (1). The killed-process map constrains the 

source aspectual to be a kill-victim and the target to be a terminated-process. The 

bottom part of Figure 7 shows a shorthand notation for illustrating metaphor-maps. 

-54-



Action Event 

S ~ Death-Event 

L-~K_illm_._g-r~~--=---+1~-~----~--~ 

s D 

D 

Figure 5: Killing 

Metaphor maps are needed to link all the core source concepts in Figure 5 to their 

counterparts in the target domain. In particular, the killing maps to the terminate­

action, the kill-victim maps to the terminated-process, the killer maps to the 

actor of the terminate-action, and the result of the killing maps to the result 

of the terminating. Figure 8 shows the complete set of maps underlying (1). It is the 

co-occurrence of all these maps that constitutes the conventional metaphor that terminat­

ing something can be viewed as a killing. 

This co-occurrence of a set of more primitive inheritance relations is the definition 

of a structured association. Therefore, a kind of structured association called a 

metaphor-sense is introduced to capture this meaningful co-occurrence of metaphor­

maps. These maps tie together concepts that are highly inter-connected in the source and 

target domains. In Example (1), the metaphor-maps tie a single absolute and its attendant 

aspectuals on the source side to an equivalent set on the target side. A metaphor-sense is, 

therefore, a structured association that ties together sets of component metaphor-maps 

that together constitute a meaningful conventional metaphor. A metaphor-sense 

represents a meaningful unit in the same way that the concept killing and its relations 

taken together form a meaningful unit. 

A metaphor-sense can participate in an unspecified number of component-map 

relations. A component-map relation is a kind of component-association relation that 

holds between a metaphor-sense and a metaphor-map. Figure 9 shows the metaphor­

sense kill-terminate-metaphor that ties together all the metaphor-maps underlying 

-55-



Action 

D 

Tc:rminatt-Action 

D 

Terminate 
Proc .. s-Acuon 

s 

D 

s c 

®~ t 

Figure 6: Terminating 

Event 

s 
D 

G Tennimte-Evcnt 

D 

Tennmate 
Process-Effect 

s 

Example (1). Figure 10 shows the abbreviated notation for illustrating metaphor-senses. 
The sense itself is represented as the box enclosing the individual maps. 

To a significant extent, metaphor-senses are the minimal meaning-bearing unit of 
conventional metaphors. Metaphor-maps represent the building blocks out of which 
meaningful metaphor-senses are constructed. The metaphor-sense represents the level at 
which one would say that there is a conventional metaphor that to terminate -something is 
to kill it. This level of representation will frequently correspond to a single metaphorical 
word sense. 

4.5. Representing Extended Metaphors 

Chapter 3 discussed the need to capture the relationships between separate meta­
phors that nevertheless seem to be related. The analysis of these extended metaphors 

-56-



Living· Thing Metaphor Map Process 

a 

c ---8 
c 

Killed-Process 

c 

Source Source I I Target Target 
Metaphor Map 

Concept I I Concept 

Source Target 
Killed-Process 

Figure 7: Metaphor Maps 

resulted in a set of criteria that explained how these metaphors arise from the preserva­

tion of core-relation~hips in the individual source and target domains. The following sec­

tions present more detailed versions of these criteria to show how this core structuring is 

directly realized in KODIAK. 

-57-



Source Target 

Killing Killing-Terminate Terminate-Process -Action 

Source Target 
Kill-Terminate-Result f-------il 

Target 
Killed-Process 

Source Target 
Killer-of-Process 

Figure 8: Kill-Terminate-Maps 

4.5.1. Core Structures 

Chapter 3 established three conditions that specified how concepts could be core­

related. In this section, these conditions are restated in KODIAK terms. Consider the 

following examples. 

(3a) John gave Mary a book. 
(3 b) Mary has a book. 
(3c) Mary got a book from John. 

Figure 11 shows the KODIAK representation of the concepts underlying the words 

give, get and have in (3). The core-relationships described in Chapter 3 are reflected in 

the network in a number of ways. Consider the relationships between the concepts giv­

ing and having, which underlie the words give and have. The core-relationship 

between these words is primarily reflected in the network by the giving-result con­

cept. The giving-result slot indicates that the result of the giving action is the sta­
tive having. Specifically, the giving-result aspectual is constrained by the concept 
having and the giving-with-result aspectual is constrained by giving. Similarly, 

the concept getting is directly related to having by the relation underlying the 

getting-result slot. 

In addition to the direct connections represented by the giving-result and 
giving-precond slots, there are a number of indirect structural relationships that indi­

cate strong connections between these concepts. Consider the g i vee and given slots of 

the giving concept. These are equated to the haver and had slots of the having con­
cept. These equate links represent the fact that the recipient of a giving is a haver and 

that the object given is a thing that is the had of some having. 

-58-



Killing Target ~ T . p . I 
~munate- rocess-Act1on 

s 

Figure 9: Kill-Terminate-Sense 

The relationship between give and have illustrates the basic kind of core-relation. 

The words give and have are said to be core-related because the concepts underlying the 

words are connected directly by a single relation and all the slots of the having concept 

are equated to slots in the concept giving. This illustrates the situation where the 

definition of one word refers to, and wholly contains, the definition of another word. 

The Relation and Containing Conditions, from Chapter 3, can now be restated in 

more specific KODIAK terms. Formally, two words can be said to be core-related if the 

following two conditions hold. 

Relation Condition: There is at least one relation whose aspectuals are con­

strained by the main concepts underlying each of the words. 

Containing Condition: All of the slots of the concept underlying one of the 

words must be equated to slots of the other concept. 

These KODIAK specific conditions capture the intuition that words are core-related 

if the definition of one of the words makes direct reference to the definition of the other. 

-59-



Kill-Terminate-Sense 

Killing· T enninate 

Kill· T enninate-Event 

Killed-Proc:eu 

Killer-of-Proc:eu 

Figure 10: Kill-Terminate-Sense 

The Containing condition requires that not only is the definition of the second word refer­

enced but that it is an integral pan of the definition of the first. 

Now consider the relationship between the meanings of the words give and get. 

The concepts giving and getting are not directly related in the same way that giving 

and having are. Instead, they are indirectly related by virtue of the fact that they are 

both core-related to having. This satisfies the intermediate core-relation condition. 

Shared Intermediate Condition: Two words may be said to be core-related if 

they both satisfy the Relation and Containing conditions with a third concept. 

4.5.2. Metaphorical Preservation of Core Structures 

Now consider the following metaphorical uses of the same words considered in 

(3). 

(4a) John gave Mary a cold. 
(4b) Mary has a cold. 
(4c) Mary got a cold from John. 

The phenomena illustrated by these examples is that the conventional metaphorical 

use of these words partially preserves the core-relationships established among the words 

in the source domain. This preservation of core-relations is captured by the Metaphor 

Preservation Principle introduced in Chapter 3. 

-60-



Figure 11: Giving, Getting and Having 

Metaphor Preservation Principle: The metaphorical use of core-related words 
in a given target domain will hierarchically preserve the core-relationships 
established among the corresponding words in the source domain. 

This section will illustrate the exact nature of this metaphorical preservation of core­
relationships. In particular, each of the three conditions for core-relatedness will be 

examined to see how each is preserved metaphorically. 

Consider the metaphorical uses of give and have in (4). The first step in determining 

the nature of the preservation of the core-relationships between give and have is to exam­

ine the details of the corresponding source and target concepts. The details of the target 
concepts of these metaphor-senses are illustrated in Figure 12. 

- 61 -



Wect-Wilh-Diaeue 

s 

c 

Figure 12: Infecting 

-62-



The first condition to consider is the Relation condition. Consider the basis for the 

core-relation between giving and having in the source domain. This relationship is pri­

marily based on the giving-result relation. This is a domain specific relation whose 

aspectuals are constrained to be a giving and a having, respectively. It is clear that 

this relation can not be preserved or carried over to the target domain intact. It is a fact 

about the domain of physical transfer and possession and has no coherent semantics in 

the domain of colds and infecting. However, some aspects of the relation are preserved 

in the target domain. 

The relation in the target domain that the giving-result relation corresponds to 

is the infect-action-result relation. This follows directly from the give­

infection metaphor-sense shown in Figure 3. The concept of giving is the source of 

the giving-infecting map whose target concept is the concept infect-with­

disease. Correspondingly, the concept of having is the source of the having­

infected map whose target concept is an infected-state. The infect-with­

disease concept is directly linked to the infected-state via the relation underlying 

the infect-result slot. This is also a domain specific relation. Its aspectuals are con­

strained to be an infect-action and an infected-state. 

The relations giving-with-giving-result and infect-with-result do share 

the common ancestor result relation. This is an abstract relation whose aspectuals are 

constrained to be an event and a stative. The conventional metaphorical use of 

core-related concepts will hierarchically reflect the relation from the source domain in 

the target domain. In this way, domain specific facts about the relations are ignored 

while a more abstract structural relationship is maintained. 

In addition to hierarchically preserving the relation between two core-related con­

cepts, the metaphor will also preserve the structured sharing imposed by the Containing 

condition. Remember that giving and having are core-related because they satisfy 

both the Relation Condition and the Containing Condition. The Containing Condition is 

satisfied because the concept of giving completely contains the concept of having. 

This was reflected in KODIAK by the fact that all the slots of having were equated to 

slots in the concept giving. This structure is preserved by the metaphorical use of give 

and have in (4). Figure 12 shows that all the slots of the infected-state concept, 

which corresponds metaphorically to having, are equated to slots of the infect­

with-disease concept which corresponds to the concept giving. 

4.5.3. Extended Metaphors 

Consider the following examples. 

(5) John gave Mary a cold. 
( 6) Mary has a cold. 

The metaphor-sense accounting for (5) is shown in Figure 13. This metaphor-

- 63 -



sense represents the conventional metaphor that to infect can be viewed as a transfer. 

The relevant maps to this discussion are the givee-infected, given-cold, and the 

give-res-inf-result mappings. These maps represent the ideas that the recipient of 

the giving is viewed as the newly infected person, the given thing is viewed as the cold, 

and the result of the giving is the result of the infecting action. Now consider the 

metaphor-sense underlying (6), as shown in Figure 14. In this case, the haver is the per­

son with an infection, the cold is the thing had, and the having corresponds to the state of 

being infected. 

Giving Give-Cold 

give-infect-cold 

giver-infector 

givee-infected 

given-cold 

give-res-inf-res. 

Figure 13: Give-A-Cold 

This section will consider the details of how the Have-Cold and Give-Cold meta­

phors satisfy the following metaphorical extension requirements, introduced in Chapter 

3. 

Subset Requirement: The extended sense must contain all the core associa­

tions as a subset of its associations. 

Closeness Requirement: The source and target concepts of the additional 

associations must be "closely connected" to the source and target concepts 

specified by the core associations. 

-64-



Having Have-Cold 

Having-Infected 

Had-Disease 

Haver-Infected 

Figure 14: Have-A-Cold 

Coherence Requirement: The new source and target concepts must be con­

nected to the core source and targets in a coherent manner. 

Figure 15 shows the extension relationship between the core metaphor Have-Cold 

and the extended sense Give-Cold. In this diagram, we see that the component metaphor 

maps from the core sense are shared and specialized by the extended sense. This exam­

ple will be used to illustrate, in general, the mechanisms that are used to accomplish 

metaphor extension. 

The metaphor-map representing the fact that a haver plays the role of the 

infected, the haver-infected map, appears twice in the extended sense, once as the 

giver-infector and again as the givee-infected. The giver of the Giving maps to 

the Infector; this matches the core map since the giver is equated to be a kind of 

haver. This core map is also used to represent the fact that the givee is also this kind of 

haver as a result of the giving. The next map to consider from the core is the 

having-infected map. This map also appears twice in the extended sense. The first use 

is in the give-res-inf-res map. This map indicates that the result of the giving, a 

having by the givee, plays the role of the result of the infecting, an infection of the 

infected person. It is, therefore, a specialized map from a having to an infected­

state. It appears again in the give-pre-inf-pre metaphor map. This map indicates 

that you have to have a cold before you can give it to anyone. This is again basically a 

map from a Having to an Infected-State. The final map to consider is the core had­

cold metaphor-map. This map appears once in the extended sense as the given-cold 

metaphor. 

The links between the shared maps in the extended sense and the maps in the core 

sense are shown simply as individual D links. In fact, the specialization of a metaphor­

map is a more complex structured association involving the specialization of each of the 

components. The following section on metaphor hierarchies will go into the details of 

- 65-



c 
Have old 

Give-Infect 

Having-Infected 

Give-Res-Inf-Res 

Haver- Infected 

Give-Pre-Inf-Pre 

Had-Cold 
Giver-Infector 

Givee-Infected 

Given-Cold 

Figure 15: Having Extending to Giving 

how this specialization is actually accomplished. At this point, it is sufficient to say that 
the first extension requirement is satisfied if all of the metaphor-maps in the core exist in 
the extension, as specializations. 

The second requirement for extension is that the source and target components of 
the extended sense must be closely connected to the concepts specified by the core. Fig­
ure 11 shows that this is clearly fulfilled, in this case, in the source domain. The concepts 
in the source domain of the extended sense are all either equated to, immediately dom­
inated by, or related by a single relation to the concepts in the source of the core domain. 
As shown in Figure 12, the same is true in the target domain. In general, the second 
requirement will be satisfied if the extended concepts are related to the core by these 
types of close association. 

The final requirement specifies that the extended concepts be consistent extensions 
from both the source and target domain of the core metaphor. This is met, in this case, 
by the result r~lations in both the source and target. On the source side, the Giving is 
related to the Ha-, ing from the core by a result relation. This is shown in the abbreviated 
slot form in Figure 11 by the giving-result slot. This relation is inherited from the 
more general category of Action and indicates that a result of a Giving is a Having. 

The same analysis holds for the target domain. The result of an Infecting is a state 
called Being-Infected. This last requirement is, therefore, satisfied if hierarchically 

-66-



related relationships hold between the core and extended concepts in both the source and 

target domains. In this case, it is a kind of Result relation. 

The final relation to be discussed from Figure 15 is the extends-to relation 

shown with the slot notation. This relation is used as an explicit link from a core sense to 

an extension of that sense. In this case, it goes from the Have-Cold metaphor to the 

Give-Cold metaphor. This relation is in a sense redundant. If the extension requirements 

hold then it is possible to compute whether or not a given sense is an extension to another 

sense. The extends-to relation is nevenheless represented explicitly, in keeping with 

our overall representational philosophy of making as many relevant facts as possible 

explicit. This relation will be used directly by the learning system in determining the 

scope of possible new metaphors. 

4.6. Metaphor Hierarchies 

Metaphor-maps and metaphor-senses are all full-fledged KODIAK concepts, and 

can therefore be arranged in absrraction hierarchies. Hierarchies are the primary mechan­

ism used to account for the similarities and differences among conventional metaphors. 

The following discussion will begin by showing the hierarchical relationships among 

various metaphor-maps. The following section will then go on to show how the various 

similarities and differences among conventional metaphors follow directly from the rela­

tions among metaphor-maps. 

Consider again the kill-process map from (1). This is a mapping from a con­

cept constrained to be a living thing to a target concept that is not a living thing. This is a 

manifestation of a more general metaphor that allows us to view non-living things in 

terms of living things for the purpose of explaining or understanding their behavior in 

terms of living things. Examples (7) through (10) from Lakoff and Johnson (1981) all 

contain specialized instances of this general metaphor. 

(7) Inflation is eating up our savings. 
(8) Those ideas died a long time ago. 
(9) He is the father of modern quantum mechanics. 

(10) Those ideas won't yield any fruit. 

Example (7) is motivated by the metaphor that the reduction in savings caused by 

inflation can be viewed as inflation consuming the savings. Inflation is viewed as an 

animal that can consume things. Example (8) contains a metaphor dealing with the dura­

tion of ideas. When an idea is no longer held or believed it has died. At a more specific 

level we have an idea filling the role of the dier of a death-event as in Figure 4. This 

role has the similar consrraint as the kill-victim of (1) that it be a living-thing. In 

a similar way as in (1), a set of interrelated metaphor-maps link the source domain of 

death to the target domain of ideas and their duration. In particular, there is a metaphor­

map from the dier to a concept that is not a living-thing. 

-67-



Example (9) contains the notion that the creation of an idea is a binh-event, and 

that the originator of the idea plays the role of the father in the binh event with the 

created idea playing role of the child. Once again, in this metaphor, there is a metaphor­

map from a concept that is not a living thing (the created idea) to a role that must b~. one 

(the child being born). This metaphor-map, however, is more specific since the constraint 

is not only to be a living thing but to be human. Finally, example (10) contains the notion 

that an idea can produce new ideas. This is metaphorically structured as a plant produc­

ing new fruit. In this case, an idea is viewed as a specific kind of living thing, a plant. 

What (1) and (8) through (10) all have in common is the idea that an abstract con­

cept like a process or idea can be viewed as a living thing to explain some aspect of its 

nature. They differ in the particular kind of living-thing that is used and in the role that it 

plays. These similarities and differences result in specific metaphor-maps in each partic­

ular case. What is needed is a mechanism that can capture the commonalities and differ­

ences among these various metaphor-maps. 

This mechanism is provided by the general inheritance mechanisms provided by 

KODIAK. Metaphor-maps that share properties are dominated by more abstract parent 

maps that capture the commonalities among the children. The source and target aspectu­

als of the parent map are constrained by concepts that are more abstract than, and dom­

inate, the con strainers on the children's source and target aspectuals. Figure 16 illus­

trates this situation with the maps from examples from (1) and (7) through (10). 

The top half of Figure 16 shows the hierarchical relationships among the maps 

underlying the above examples. They all converge on the abstract metaphor-map 

representing the idea of viewing a non-living-thing as a living-thing. The two metaphor­

maps in the dotted box are expanded in the bottom half of the diagram to show the exact 

details of the inheritance links. In this expansion, we can see that the idea-as­

living-thing metaphor-map dominates the forgotten-idea-as-dier map. In the 

parent map, the idea-as-target aspectual is constrained to be an idea. The living­

thing-as-source aspectual is constrained to be a living-thing. In the 

forgotten-idea-as-dier map, we see that the inherited source aspectual is specialized 

by being constrained by the dier aspectual of the death-event. The inherited target 

aspectual is further specialized by being constrained by the forgotten-idea aspectual. 

The constraining aspectuals forgotten-idea and dier satisfy the appropriate inheri­

tance restrictions since they in turn are constrained by idea and living-thing, respec­

tively. It is typically the case that the source and target aspectuals of metaphor-maps at 

the bottom of the metaphor hierarchy are constrained by the aspectuals of some specific 

context. More abstract metaphors tend to have their aspectuals constrained by less 

specific absolutes. 

Careful examination of Figure 16 reveals that the metaphor-maps are actually being 

specialized in different ways. Consider the process-as-living-thing specialization 

of the non-living-thing-as-living-thing. In this case, the metaphor-map is spe­

cialized on the basis of the target concept. The generic category non-living-thing is 

replaced by process. In the case of the non-living-thing-as-plant mapping, the spe­

cialization is done on the basis of the source concept. The metaphor-map hierarchy may, 

-68-



r-----------~ 

p-As-Living-~ 

c 

D 

D D 

/otten-Idea-As~ 

Figure 16: Metaphor-map Hierarchy 

therefore, contain specializations based either on the source or target aspectuals or both. 

Metaphor-maps may also participate in multiple inheritance. Consider the idea­

as-animal and idea-as-plant maps. These maps inherit their respective specializa­

tions from multiple parents. The details for the idea-as-animal map are shown in 

-69-



Living-Thing I Non-Living-Thing I 

c c 

Figure 17: Multiple Inheritance 

Figure 17. In this diagram, we can see that this map has two parents the idea-as­

living-thing map and the non-living-thing-as-animal map. Its source and target 
aspectuals are each dominated by the both of the corresponding aspectuals from each 
parent. The multiple-inheritance mechanism assigns only the most specific constrainer to 
the lower child aspectuals. In this case, the source aspectual is constrained to be an 
animal, which is the more specific than living-thing. In the same way, the target is 
constrained to be an idea rather than the more abstract non-living-thing. In this way, 
the idea-as-animal map is created by specializing different parts of the two parent 
maps. 

4.7. Metaphorical Interactions 

At this point we have all the tools necessary to consider a wider range of interac­
tions among conventional metaphors. This section will consider some interactions 
among different metaphors and how these interactions are reflected in the representation. 
The ideas presented in this section will serve to introduce some ideas that will be more 
fully discussed in Chapters 8 and 9. The emphasis here is in showing how the abstract 
connections among systems of conventional metaphors are reflected by the representation 

-70-



through the use of hierarchies. 

Consider again the following examples discussed in Chapter 3. 

( 11) Mary gave John a good idea. 
(12) Mary tried to sell the idea to John. 

The metaphor-sense underlying the use of give in (11) consists of the following associa­

tions: communicating is transferring, the teller is the source and initiator of the transfer, 

the hearer is the receiver of the transfer, the communicated idea is the transferred object 

and that belief is possession of the object. The following associations underlie (12): per­

suading someone of some proposition is selling something to them, the goods sold is the 

proposition, the seller is the persuader, the customer is the person persuaded, and finally 

ownership is belief. Both of these metaphor-senses are instances of the abstract conduit 

metaphor as discussed by Reddy (1981). They share the same basic underlying structure 

that communication between a speaker and a listener can be viewed as a transfer between 

them. However, they each instantiate this basic structure with different, but related, 

source and target domains. What is needed is a way to account for this basic structure 

and the relationship between the senses of give and sell underlying (11) and (12). 

The relationship between these senses can be clearly seen if we examine the two 

source and target domains. The source concepts giving and selling are both children of a 

more abstract concept denoting transfer where the donor plays the role of the actor. We 

can say that they are siblings with respect to the same parent category. They differ in L~e 

facts that are independently asserted about each. In a similar fashion, telling and persuad­

ing are also siblings, as children of a more abstract communication concept. Note that, as 

· discussed in Chapter 3, both selling and persuading are more complex concepts then the 

corresponding concepts from (11). They inherit their complex definitions from other 

categories, in addition to the parents they share with the concepts from (11). Since both 

the sources and targets are siblings of common parents it seems to make sense to say that 

the metaphor-senses are also instantiations of a more abstract parent. This more abstract 

sense captures the basic commonality in the two metaphors. The requirement for such a 

common parent metaphor is that both the source and target concepts in each of the meta­

phors must be in a corresponding parent-child relation to a more abstract parent. 

Figure 18 shows the hierarchical relationship among the senses underlying (11) 

and (12). It shows how each of the maps in the give and sell senses is properly dominated 

by a map in the more abstract transfer-idea-metaphor. Remember that a metaphor­

sense is a KODIAK object consisting of a set of component-map relations. Each 

component-map relation connects a sense to a metaphor-map. Therefore, in order to 

accomplish the hierarchical organization desired for this example, each component-map 

of the sibling metaphor-senses must be dominated by a corresponding map in the parent 

sense. Correspondingly, each metaphor-map consists of a source and target aspectual. 

Each map may be dominated in the parent only if each of its aspectuals can be. There­

fore, the well-formedness of the hierarchy is ultimately enforced at the level of the 

metaphor-map. If each of the senses can satisfy this requirement then the metaphor­

senses themselves may be dominated by the more abstract sense. 

- 71 -



Transfer-ComrnWlicale 

Transferred-Topic 

Give-Idea-Metaphor 

Give-Tell Sell-Persuade 

Given-Idea 

Give-Res-Tell-Res Sell-Res-Per-Res 

Figure 18: Giving and Selling Ideas 

Finally, consider the relationship between the schemas underlying (13) and (14). 

( 13) Mary gave John a good idea. 
(14) Mary gave John a cold. 

These examples do not involve metaphors with overlapping scope, nor are they related in 
a strictly hierarchical fashion. Nevertheless, they do to have a structural similarity that 
needs to be represented. 

In particular, note that both contain a map that represents the notion that something 
that is not an object can be treated as one, (a disease and an idea.) Both contain the 
notion that transfer represents some change of state with respect to the metaphorical 
object. The point of these examples is that the metaphor senses underlying Examples 
(13) and (14) contain individual component maps that are similar. This similarity is 
accounted for by the hierarchical relationship among the component maps in each 
schema. Figure 19 shows some of the relevant relationships between these schemas that 
account for their similarity. (Note that for the sake of readability most of the maps in 

- 72. 



each schema are omitted from this figure.) 

Figure 19: Giving Metaphors 

This figure graphically illustrates the building block relationship between 

metaphor-maps and senses. In the give-an-idea sense, two maps are shown. The 

give-tell map is dominated by the communicate-as-transfer map which in turn is 

dominated by the act-upon-as-transfer (Jacobs 1985) map. The_ act-upon-as­

transfer map is a map representing a general metaphor that allows abstract events with 

participants to be viewed as transfer-events where some participant receives or donates 

some metaphorical object. The given-idea map is dominated by the idea-as-object 

map which is in turn dominated by the non-object-as-object map. This metaphor 

map reflects the widespread use of reification in our conceptual system. 

Similarly in the give-a-disease sense, two maps are shown. The given­

disease map is dominated by the disease-as-object map. This in turn is a sibling of 

the idea-as-object map since they both have the non-object-as-object mapping as 

a parent. Finally, the give-infect map is dominated by the infect-as-transfer map 

- 73 -



which like the communicate-as-transfer map is dominated by the act-upon-as­

transfer mapping. 

In the discussion of examples (11) and (12) we saw the situation where two sche­

mas were in a direct hierarchical relationship by virtue of the fact that all the component 

metaphor-maps of one schema were specialized in the more specific schema. Figure 19 

illustrates the somewhat more distant relationship between the schemas underlying (13) 

and (14). They involve the same source domain with completely separate target 

domains. The domains of communication and infections are not related in any meaning­

ful way in the hierarchy. They do not share any close meaningful parent categories. For 

this reason there can be no abstract metaphor schema dominating both of the schemas in 

question. However, the similarity of the two schemas is accounted for by the hierarchical 

structure of the component maps and the sharing of maps with common parents. 

4.8. Summary 

This chapter has introduced KODIAK and the mechanisms for representing meta­

phors. In particular metaphor-maps and metaphor-senses. In introducing these mechan­

isms I have touched upon some of the regularities among conventional metaphors that 

have motivated them. In particular, I have shown how the notion of abstraction hierar­

chies can be applied to the representation of conventional metaphors. 

The following chapters will explore how the knowledge presented in this chapter 

can actually be used. Chapter 5 will show how an interpretation system can apply these 

structures to interpret metaphoric language. Chapters 6 through 10 show how these meta­

phors can be acquired. 

- 74-



Chapter 5 

Metaphoric Interpretation 

5.1. Introduction 

This chapter demonstrates how the metaphoric knowledge described in the previous 

chapters can be applied to interpret conventional metaphoric language. The main thrust 

of the approach is that normal processing of metaphor proceeds through the application 

of specific knowledge about the metaphors in the language. 

Metaphor is a normal and conventional part of language. The interpretation of utter­

ances containing metaphors should reflect this fact in the way that the metaphors are pro­

cessed. In particular, the interpretation of metaphor should not be viewed as an excep­

tion to normal processing. As discussed in Chapter 2, previous approaches have treated 

metaphors as anomalous inputs that are only dealt with when ordinary or literal interpre­

tations are not coherent. The approach taken here is that metaphoric and literal interpre­

tations have equal status and are evaluated using interpretation mechanisms that are fun­

damentally the same. 

5.2. Conceptual Analysis 

The interpretation of sentences containing metaphoric language is a two step pro­

cess. In the first step, a syntactic parse-tree and a preliminary semantic representation are 

produced. In the second step, this preliminary representation is replaced by the most 

specific set of concepts that can coherently explain the input. 

The following sections give overviews of the basic tasks in performed in each step. 

Section 5.3 gives the detailed interpretation algorithm, illustrated with examples intended 

to highlight important issues raised by this approach to metaphor interpretation. 

-75-



5.2.1. Initial Parse 

The first step in the interpretation of an input sentence is the production of a syntac­

tic parse and a preliminary semantic representation known as a primal representation 

(Wilensky 1987). This first step is accomplished by a syntactic parser initially imple­

mented by Peter Norvig. The parser is a unification-based bottom-up chart parser. It has 

been augmented to produce KODIAK concepts, in addition to a syntactic parse of the 

sentence. 

This parser uses no semantic information to guide the parse and makes no effort to 

resolve syntactic ambiguities. It returns all possible parses with the primal semantics of 

each. This architecture was chosen mainly for pragmatic purposes. A more appropriate 

architecture would bring semantic information to bear during the parse in order to resolve 

these ambiguities. 

The decision to perform metaphoric interpretation only after the initial parse is com­

pleted is another pragmatic decision. Metaphoric knowledge could also have been 

brought to bear during parsing. More generally, it should be possible to do metaphoric 

interpretation during stages of processing that are not directly linked to the interpretation 

of a single utterance. For practical purposes, this thesis limits the application of meta­

phoric knowledge to the analysis of single sentence utterances. 

The primal representation produced by the parser represents concepts derivable 

from knowledge in the grammar and lexicon available to the parser. The primal 

representation represents a level of interpretation that is explicitly in need of further 

semantic processing. It should not be confused with what has traditionally been called a 

literal meaning. The primal representation should be simply considered as an intermedi­

ate stage in the interpretation process where only syntactic and lexical information has 

been utilized. 

The primal representation, at this stage of processing, represents a ponion of what 

Wilensky (1987) called the Primal Content of an utterance. The Primal Content 

represents the meaning of an utterance that is derivable from knowledge of the conven­

tions of a language, independent of context. The primal representation produced at this 

s: 1ge of processing includes that portion of the Primal Content derivable from the con­

ventions of the language embodied in the grammar and the lexicon. Further interpreta­

tion and elaboration by the Metaphor Interpretation System brings metaphorical conven­

tions to bear to produce a level of representation that corresponds to a more complete Pri­

mal Content. 

- 76-



Consider the following examples. 

(1) John gave Mary a gift. 
(2) John gave Mary a cold. 

The primal representations for these examples are given in Figure 1, in the linear 

KODIAK form introduced in Chapter 4. 

(A Givingl (j Giving) 

(agentl (j agent) (A Johnl (j John))) 

(patientl (j patient) (A Maryl (j Mary))) 

(objectl (j object) (A giftl (j gift)))) 

(A Giving2 (j Giving) 

(agent2 (j agent) (A John2 (j John))) 

(patient2 (j patient) (A Mary2 (j Mary))) 

(object2 (j object) (A Coldl (j Cold)))) 

Figure 1: Primal Representations. 

The primal representation, in these examples, has simply assigned new instances of 

the absolutes mentioned in the sentence to the appropriate thematic roles. These input 

roles are left at the level of thematic roles and no constraint checking is done on their 

fillers. The main concept has been assigned to the concept directly specified by the word 

give. This, however, does not indicate a commitment that the final interpretation will 

involve a Giving. The Giving here merely represents the fact that the word give plays 

a central role in the input sentences. 

The similarity between the primal representations of these two sentences reflects the 

similarity in the surface forms. The following interpretation process will take these pri­

mal forms and produce two very different interpretations. 

5.2.2. Interpretation 

The interpretation process consists of deciding which of the concepts that exist in 

the system's knowledge-base can most coherently accept the constraints imposed by the 

primal input In particular, the literal meaning and all the known relevant conventional 

metaphorical meanings are considered as possible interpretations. The concept that best 

accounts for the input replaces the primal representation as the ultimate representation of 

the input. 

- 77-



Two basic inference processes are used, either separately or in tandem, to accom­
plish this interpretation task; these are concretion (Norvig 1983, Wilensky 1983, Wilen­
sky et al 1986) and metaphoric unviewing (Wilensky 1987). Briefly, concretion is an 
inference that replaces an abstract concept by a more specific concept. Metaphoric 
unviewing replaces a given concept that plays the role of a source concept in a metaphor, 

with the corresponding target concept. 

Possible candidate interpretations arise from two main sources. Non-metaphorical 
candidates include the direct literal interpretation of the primal representation and any 
more specific descendents of that concept. Candidate metaphorical interpretations 
include any metaphor-senses that are directly attached to, or inherited by, the non­
metaphorical candidate concepts. Concretion and metaphoric unviewing inferences are 
applied to this set of candidate metaphors. 

Constraint checking is the key operation underlying both concretion and meta­
phoric unviewing. The input concepts specified in the primal representation are compared 
against the constraints of the candidate interpretations. Checking the constraints on an 
interpretation consists of insuring that the specified input filler of each role is coherent 
with the semantic constraints on that role. For a filler to coherently fill a role it must 
either be an instance of the concept that constrains that role or an instance of a descen­
dent of the constraining concept. 

Constraint checking in a concretion inference consists of insuring that the fillers of 
the roles in the current concept can satisfy the constraints on all the more specific roles in 
the more specific category. Metaphoric interpretations are evaluated in a similar fashion. 
The filler of the source role must be coherent with the semantics specified for the 
corresponding target role in the particular metaphor being applied. 

Consider Example (1) again. The interpretation process finds that the specified role 
fillers in the primal representation satisfy the constraints on the literal interpretation of 
give as the concept Giving. This initial concretion results in the creation of the Giving 

concept shown as Gi vingl in the top half of Figure 2. 

The concretion inference should, however, find the most specific concept that can 
accommodate the input. In this case, we find that Gi vingl can be replaced by the more 
specific Giving concept, Gift-Giving. A concretion inference is, therefore, a recursive 
procedure proceeding down the hierarchy to the most specific category possible. In this 
example, the concept Gift-Giving is known to be a kind of Giving where the role of 
the given must be a gift of some kind. In the current example, this is known directly 
from the use of the word gift. The final concreted representation of this example is shown 
as Gift-Givingl in the bottom of Figure 2. 

In the case of example (2), the interpretation that best accounts for the input results 
from a metaphoric unviewing inference. The metaphor Give-Disease is used to pro­
duce the representation shown as Infect-With-Diseasel in the top part in Figure 3. 
Figure 4 shows the Give-Disease metaphor with all of its metaphorical mappings. This 
diagram shows that the role of the giver corresponds to the infector, the givee 

- 78-



(A Givingl ci Giving) 

(giverl ci giver) (A Johnl ci John))) 

(giveel ci givee) (A Maryl ci Mary))) 

(givenl ci given) (A giftl ci gift)))) 

{A Gift-Givingl ci Gift-Giving) 

(gift-giverl ci gift-giver) {A Johnl ci John))) 

(gift-giveel ci gift-givee) (A Maryl ci Mary))) 

(gift-givenl ci gift-given) (A giftl ci gift)))) 

Figure 2: Final Concretion Step 

corresponds to the infected, and the given corresponds to the infection. All the 

specified fillers of the source roles in the input can coherently fill the target roles. In par­

ticular, note that Coldl, the filler of the source role givenl, satisfies the Disease con­

straint on the target role infection, corresponding to role gi venl. 

Infect-With-Disease) (A Infect-With-Diseasel (i 
(infectorl ci infector) 

(infectedl ci infected) 

(infectionl ci infection) 

(A John2 (i John))) 

(A Mary2 (i Mary))) 

(A Cold2 ci Cold)))) 

(A Cold-Infectl (i Cold-Infect) 

(cold-infectorl ci cold-infector) 

(cold-victirnl ci cold-victim) 

(infected-coldl ci infected-cold) 

(A John2 (i John))) 

(A Mary2 (i Mary))) 

{A Cold2 (i Cold)))) 

Figure 3: Infection Concretion 

Once it has been determined that the target roles of the metaphor can be coherently 

filled by the input fillers, a new instantiation of the target concept is produced to replace 

the primal representation. This newly created concept is now subject to possible further 

interpretation via a concretion inference. This reflects the fact that the metaphor applied 

in the unviewing inference may have its target concept represented at a level which is 

more abstract than the given example. 

In this example, the system has knowledge of a concept that is more specific than 

- 79-



Giving Give-Infection 
Infect-With-Disease 

Giving- infecting 

giver-infector 

givee-infected 

given-infection 

give-res-inf-res 

Figure 4: Giving a Disease 

Infect-With-Disease. The concept Cold-Infect represents specific information 

about infecting someone with the common cold. The abstract target concept produced via 

the metaphoric unviewing inference is, therefore, concreted to this more specific concept. 

The final representation of the input is shown in Figure 3 as the concept cold-Infectl. 

5.3. Interpretation Algorithm 

This section presents the basic interpretation algorithm. After each of the steps of 

the algorithm has been introduced, a series of detailed processing examples will be 

presented to illustrate the algorithm and to present various issues raised by the approach. 

Step 1: Parser produces a primal representation for the input sentence. 

Step 2: Case roles are concreted to the appropriate semantic relations associated 

with the primal concept. 

Step 3: Collect all possible conventional interpretations, both metaphorical and 
literal, of the primal conc~pt. 

- 80-



Step 4: Validate each of the possible interpretations. This consists of insuring that 

the concepts specified in the input satisfy the semantic constraints imposed by each of the 

possible interpretations. 

Step 5: Apply all the consistent interpretations. This consists of the instantiation of 

the concepts underlying each of the possible coherent interpretations. This application 

may result in the replacement of the primal concept by either a specific literal interpreta­

tion or a conventional metaphorical one. 

Step 6: Return all the interpretations that are consistent with the input concepts. 

The most important point to realize about the strategy embodied in this algorithm is 

that the literal meaning of the input does not have a privileged status. Previous systems 

that have attempted to deal with metaphor have treated them as ill-formed exceptions to 

normal processing. As described in Chapter 2, these systems will only attempt a meta­

phorical interpretation when a violation of a selection restriction prevents a coherent 

reading for the literal meaning. 

There are two main problems with this approach. The first is the fact that it gives an 

importance, or centrality, -to the literal meaning over other conventional meanings that 

does not seem warranted. There seems to be no a priori reason for the interpreter to 

believe, or expect, the literal meaning over any other interpretation. The second problem 

is more immediate for these systems. There are conventional metaphors that do not exhi­

bit surface selection restriction violations in their literal reading. What is needed, there­

fore, is a strategy that permits metaphoric interpretation that it is not sensitive to the 

coherence of a literal interpretation. 

The strategy adopted here is to consider the literal meaning and all conventional 

metaphorical readings equally. The only requirement is that the given input must satisfy 

the requirements of the interpretation, whether literal or metaphorical. No privileged 

status is given to the literal meaning; it is checked along with all the other conventional 

meanings. Steps 3 and 4 of the algorithm collect and validate all the known conventional 

uses, metaphorical and literal. The recognition of the use of a conventional metaphor is 

in no way dependent upon the success or failure of the literal interpretation. 

The steps of the algorithm and some of the issues raised by the strategy it embodies 

will now be illustrated in terms of the processing of the following examples. 

(3) Inflation is eating up our savings. 
(4) John has a cold. 
(5) How can I get into lisp? 
( 6) McEnroe killed Connors. 

For each of these examples, the system has direct knowledge of an appropriate 

conventional metaphor that will allow the sentence to be interpreted correctly. Consider 

the processing of Example (3), from Lakoff and Johnson (1980). In this metaphor, an 

abstract concept like inflation is viewed as an agent that can perform certain actions. In 

- 81 -



addition, the action of eating is viewed as an action or an event that results in the reduc­

tion in amount of the eaten thing. 

> (do-sentence) 

Interpreting sentence: 

Inflation is eating up our savings. 

Interpreting primal input. 

(A Eating-Up61 (i Eating-Up) 

(agent595 (i agent) 

(A Inflation25 <i Inflation))) 

(patient560 (i patient) 

(A Savings25 (i Savings)))) 

In the first step, the parser accepts the input sentence as specified by the user and 

produces a primal representation of the input in the form of KODIAK concepts. The 

verb-particle construction, eat up, is treated as a single unit with a particular meaning. 

Concreting input relations. 

Concreting agent to eater-of-eating-up. 

Concreting patient to eaten-up. 

In the second step, based on information about the relations associated with the con­

cept Eating-Up, the system determines that the relation agent found by the parser 

should be considered a eater-of-eating-up. In the same way, the patient is taken to 

be eaten-up. Note that these concreted relations still have the same preliminary status 

as the concept Eating-Up. These are all still primal concepts in need of interpretation. 

Concreting the relations at this point is merely a form of canonicalization to bring the 

case relations down to the same level as the main concept. 

Interpreting concreted input. 

(A Eating-Up61 (i Eating-Up) 

(eater-of-eating-up67 

(i eater-of-eating-up) 

(A Inflation25 <i Inflation))) 

(eaten-up39 <i eaten-up) 

(A Savings25 (i Savings)))) 

- 82-



The case relations specified in the initial primal representation are now concreted to 

more specific relations that are directly attached to the concept Giving. This is called 

the concreted primal representation. Note that the constraints on the more specific rela­

tions are not checked against the fillers of the roles during this concretion. 

In the third step of the algorithm, all the possible conventional interpretations of the 

input are collected for further consideration. In this case, the system finds two possible 

interpretations: the literal meaning and the Eat-Up-Reduce-Money metaphor. 

Failed interpretation: Eating-Up61 as Eating-Up. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Eat-Up-Reduce-Money. 

Step 4 of the algorithm attempts to validate each of the possible candidate interpre­

tations. In this case, it finds that the literal interpretation, represented by the concept 

eating-up is not consistent with the input. In particular, Inflation can not fill the role 

of eater because that role is constrained to be a living-thing. The concept inflation 

does not have living-thing as an ancestor in the hierarchy. In a similar fashion sav­

ings fails to satisfy the role of eaten. 

The fact that the system considers the literal interpretation first is an artifact of the 

search procedure. It does not indicate any reliance on attempting the literal meaning first 

as was the case in previous approaches. 

It does, however, find that there is a consistent metaphorical interpretation based on 

the Eat-Up-Reduce-Money metaphor. The same fillers of the input roles that could not 

satisfy the Eating-up interpretation, can satisfy the corresponding target roles in this 

metaphor. In particular, Inflation25 can fill the role of money-reducer and Sav­

ings25 can fill the role of money-reduced. 

(A Eat-Up-Reduce-Money (i Eating-Metaphor Metaphor-Schema) 

(eaten-reduced eaten-up ~ money-reduc~d) 

(eater-reducer eater-of-eating-up ~ ~oney-reducer) 

(eatup-reduce Eating-Up~ Money-Loss)) 

Mapping input concept Eating-Up61 to concept Money-Loss46 

Mapping input role eaten-up39 with filler Savings25 to 

target role money-reduced35 

Mapping input role eater-of-eating-up67 with filler Inflation25 to 

target role money-reducerS? 

In Step 5, each of the valid interpretations are applied to create new concepts to 

replace the primal concepts. The application of the Eat-up-Reduce-Money metaphor 

- 83-



results in the creation of a new instance of the main target concept Money-Loss with the 

input roles assigned according to the metaphor-maps eater-reducer and eaten­

reduced. 

Yielding interpretation: 

(A Money-Loss46 (i Money-Loss) 

(money-reduced35 (i money-reduced) 

(A Savings25 (i Savings))) 

(money-reducer57 (i money-reducer) 

(A Inflation25 (i Inflation)))) 

The system next checks to see if the concept produced by the application of the 

metaphor can be concreted to any more specific concepts. In this case, there is the more 

specific concept Savings-Loss beneath Money-Loss that matches the constraints of the 

input example. 

Concretion yields: 

(A Savings-Loss20 (i Savings-Loss) 

(savings-reducer20 (i savings-reducer) 

(A Inflation25 (i Inflation))) 

(savings-reduced20 (i savings-reduced) 

(A Savings25 (i Savings)))) 

The concept Eating-Up has now been successfully interpreted as an instance of the 

concept Savings-Loss. No further interpretation is needed so this concept is returned 

as the final output 

Final interpretation of input: 

(A Savings-Loss20 (i Savings-Loss) 

(savings-reducer20 (i savings-reducer) 

(A Inflation25 (i Inflation))) 

(savings-reduced20 (i savings-reduced) 

(A Savings25 (i Savings)))) 

In the previous example, the system found and applied an existing metaphor that 

was represented at a fairly specific level of detail. A relatively small concretion was 

made to concrete the target concept of the Eat-Up-Reduce-Money metaphor from a gen­

eral loss of money to a Savings-Loss. The following example is an example of meta­

phorical interpretation combined with a more difficult concretion. 

- 84-



In this example, the system has knowledge of the highly abstract metaphor Have­

State. This metaphor represents the widespread English metaphor that the concept of 

being in some state can be expressed as a possession. In this example, the state of being 

infected is expressed as a possession. The infected person is viewed as being in posses­

sion of the infection metaphorically. However, MIDAS does not have a specific meta­

phor representing this Infection-As-Possession use. Rather, it is forced to apply the more 

abstract metaphor Have-state. Concretion of this abstract concept leads to the intended 

conceptof Infected-State. 

> (do-sentence) 

Interpreting sentence: 

John has a cold. 

Interpreting primal input. 

(A Having7 (i Having) 

(agent52 (i agent) (A John49 (i John))) 

(patient52 (i patient) (A Cold24 (i Cold)))) 

Concreting input relations. 

Concreting patient to had. 

Concreting agent to haver. 

Interpreting concreted input. 

(A Having7 (i Having) 

(haver7 (i haver) (A John49 (i John))) 

(had7 (i had) (A Cold24 (i Cold)))) 

Failed interpretation: Having7 as Having. 

Failed interpretation: Having7 as Have-Idea. 

Failed interpretation: Having7 as Have-Permission. 

The system, at this point, has determined that the literal interpretation and two meta­

phorical interpretations are not appropriate. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Have-State. 

(A Have-State (j Metaphor-Schema) 

- 85-



(have-state-map Having -+ State) 

(had-state-value had -+ state-value) 

(haver-state-holder haver-+ state-object)) 

The system finds that the abstract Have-State metaphor is applicable to the primal 

concepts. 

Yielding interpretation: 

(A State4 (i State) 

(state-value4 (i state-value) 

(A Cold24 (i Cold))) 

(state-object4 (i state-object) 

(A John49 (i John)))) 

The system applies the metaphor to yield an instance of the State concept. This 

concept merely indicates that the target concept is a state that holds between John and 

Cold. 

Concretion yields: 

(A Cold-Inf-State4 (i Cold-Inf-State) 

(cold-inf-person4 (i cold-inf-person) 

(A John49 <i John))) 

(cold-inf-of4 (i cold-inf-of) 

(A Cold24 (i Cold)))) 

The concretion process then replaces this abstract state concept with the most 

specific known kind of state that can accommodate the input values. In this case, the 

resulting concept is cold-Inf-State representing the state of a person being infected 

with a common cold. 

Final interpretation of input: 

(A Cold-Inf-State4 (i Cold-Inf-State) 

(cold-inf-person4 (i cold-inf-person) 

(A John49 (i John))) 

(cold-inf-of4 <i cold-inf-of) 

(A Cold24 (i Cold)))) 

- 86-



As mentioned earlier, in our strategy the recognition of the use of a conventional 

metaphor is in no way dependent upon the success or failure of the literal interpretation. 

Consider the following example. 

(7) McEnroe killed Connors. 

This is a straightforward use of the conventional metaphor that to kill someone in a 

competition means to defeat them. This metaphor is particularly evident in the sports 

pages of any newspaper. The obvious problem for a system using selection restriction 

violations is that this example does not involve any violation of the selection restriction 

on the literal meaning. The MIDAS strategy avoids this problem by attempting to find 

all conventional interpretations of the input. In the following example, the system dis­

covers that there are two legitimate interpretations to this example. 

> (do-sentence) 

Interpreting sentence: 

McEnroe killed Connors. 

Interpreting primal input. 

(A Killingl44 (i Killing) 

(agent596 (i agent) 

(A Mcenroe46 <i Mcenroe))) 

(patient561 (i patient) 

(A Connors45 (i Connors)))) 

Concreting input relations. 

Concreting patient to kill-victim. 

Concreting agent to killer. 

Interpreting concreted input. 

(A Killingl44 (i Killing) 

(killer89 <i killer) 

(A Mcenroe46 (i Mcenroe))) 

(kill-victim89 (i kill-victim) 

(A Connors45 <i Connors)))) 

Valid literal interpretation. 

The literal interpretation of killingl44 as an instance of killing is found to be a 

valid reading. This follows from the fact that the input roles McEnroe and Connors 

- 87-



completely satisfy the constraints on the killer and kill-victim roles. 

(A Killingl44 (i Killing) 

(killer89 (i killer) 

(A Mcenroe46 (i Mcenroe))) 

(kill-victim89 (i kill-victim) 

(A Connors45 (i Connors)))) 

At this point, the system has determined that the literal reading of this killing is con­

sistent with the input It, however, continues to check for other possibly coherent read­

ings. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Kill-Sports-Defeat. 

The system finds that the known Kill-Sports-Defeat metaphor can adequately 

accommodate the input concepts. This metaphor is, therefore, applied with new target 

concepts instantiated and filled in to represent the new interpretation of the primal 

representation. 

(A Kill-Sports-Defeat (i Kill-Metaphor Metaphor-Schema) 

(killed-defeated kill-victim ~ defeated) 

(killer-defeator killer ~ defeator) 

(kill-defeat Killing~ Sports-Defeat)) 

Mapping input concept Killingl44 to concept Sports-Defeat60 

Mapping input role kill-victim89 with filler Connors45 to 

target role defeated60 

Mapping input role killer89 with filler Mcenroe46 to 

target role defeator62 

Yielding interpretation: 

(A Sports-Defeat60 (i Sports-Defeat) 

(defeated60 (i defeated) 

(A Connors45 (i Connors))) 

(defeator62 (i defeator) 

(A Mcenroe46 (i Mcenroe)))) 

MIDAS goes on to find that the remaining killing metaphors are not applicable. In 

each of the remaining cases, the filler of the kill-victim role fails to meet the require-

- 88-



ments of the target role in the metaphor. 

Failed interpretation: Killingl44 as Kill-Conversation. 

Failed interpretation: Killingl44 as Kill-Delete-Line. 

Choosing among ambiguous interpretations. 

(A Killingl44 (i Killing) 

(killer89 (i killer) 

(A Mcenroe46 <i Mcenroe))) 

(kill-victim89 (i kill-victim) 

(A Connors45 (i Connors)))) 

(A Sports-Defeat60 <i Sports-Defeat) 

(defeated60 <i defeated) 

(A Connors45 <i Connors))) 

(defeator62 <i defeator) 

(A Mcenroe46 (i Mcenroe)))) 

According to the options chosen by the user, MIDAS may either return all the ambi­

guous interpretations, or it may attempt to disambiguate the senses immediately. In this 

case, it attempts a disambiguation and returns the metaphorical interpretation. The 

disambiguation heuristics will be described below. 

Choosing best answer. 

Final interpretation of input: 

(A Sports-Defeat60 (i Sports-Defeat) 

(defeated60 (i defeated) 

(A Connors45 (i Connors))) 

(defeator62 (i defeator) 

(A Mcenroe46 (i Mcenroe)))) 

The process of disambiguating this kind of example should properly be performed 

by an interpreter that has full access to the discourse context. A context-sensitive text 

inference system like FAUSTUS (Norvig 1986) could accept the ambiguous meanings 

from the interpreter and choose one based on how well it fit into the current context. 

There is really insufficient information in the single sentence given above to adequately 

choose one of the meanings. However, when the system is asked to choose among ambi­

guous interpretations it uses the following specificity heuristic. 

Select the interpretation that most tightly matches the constraints posed by the 

input concepts. 

- 89-



Consider the application of this heuristic in the processing of (7). In this example, 

the metaphorical interpretation most closely matches the input. Consider the constraints 

posed by the concept Killing, which is the basis for the literal reading. The concept 

Killing specifies that the killer is an animate and that the kill-victim is a living 

thing. The input concepts McEnroe and Connors easily satisfy these constraints. The 

metaphorical roles of the Kill-Sports-Defeat reading have the more specific con­

straints that the killer and kill-victim must be known to be competitors in some 

sport. The knowledge-base has McEnroe and connors represented as such competitors. 

Although the input concepts match both interpretations, they match the metaphorical 

more tightly therefore that one is selected. 

Whether or not the interpreter should be attempting to disambiguate these senses at 

this point is not really the issue. The important point is that making a metaphorical 

interpretation versus a literal one should be based on how well that interpretation fits the 

known information. It should not be dependent on whether or not the literal meaning is 

coherent. Contrast this with the approach taken in FAUSTUS (Norvig 1986). FAUSTUS 

only applied metaphoric knowledge in the presence of a constraint violation. As Norvig 

points out, this prevents the interpretation of this example as a Sports-Defeat. 

The representation and use of conventional metaphoric knowledge is particularly 

important in abstract technical domains like operating systems. Such domains tend to 

contain many concepts that are structured metaphorically. The following example illus­

trates the integration of MIDAS with the UNIX Consultant system. The UNIX domain 

has proven to be a rich test-bed for testing the applicability of our approach to metaphor. 

In the following example, a user has posed a question to UC using the conventional 

environment metaphor for interactive computer processes. MIDAS finds and applies the 

appropriate metaphor to produce an appropriate representation to give to UC. UC 

accepts the interpreted representation and answers the user's query. At the present time, 

MIDAS is attached to a small prototype version of UC built to demonstrate the applica­

bility of the metaphor system. 

> (do-sentence) 

Interpreting sentence: 

How can I get into lisp? 

Interpreting primal input. 

(A EnteringSO (i Entering) 

(agent597 (i agent) (A I203 (i I))) 

(patient562 (i patient) (A Lisp58 (i Lisp)))) 

The input phrase get into is treated as a phrasal unit with a conventional meaning 

- 90-



corresponding to Entering. 

Concreting input relations. 

Concreting patient to entered. 

Concreting agent to enterer. 

Interpreting concreted input. 

(A EnteringSO 

(entererSO 

(enteredSO 

(i Entering) 

(i enterer) 

(i entered) 

(A I203 (i I))) 

(A Lisp58 (i Lisp)))) 

Failed interpretation: EnteringSO as Entering. 

Failed interpretation: EnteringSO as Enter-Association. 

The literal interpretation and a known metaphor are rejected before the correct 

metaphor is found and applied. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Enter-Lisp. 

(A Enter-Lisp (i Container-Metaphor Metaphor-Schema) 

(enter-lisp-res enter-res ~ lisp-invoke-result) 

(lisp-enterer enterer ~ lisp-invoker) 

(entered-lisp entered ~ lisp-invoked) 

(enter-lisp-map Entering~ Invoke-Lisp)) 

Mapping input concept EnteringSO to concept Invoke-Lisp30 

Mapping input role entererSO with filler I203 to 

target role lisp-invoker30 

Mapping input role enteredSO with filler Lisp58 to 

target role lisp-invoked30 

The Enter-Lisp metaphor has been found and applied to the given input concepts. 

The main source concept is interpreted as an instance of the Invoke-Lisp concept 

according to the enter-lisp-map. The input roles enterer and entered are inter­

preted as the target concepts lisp-invoker and lisp-invoked respectively. 

Yielding interpretation: 

(A Invoke-Lisp30 (i Invoke-Lisp) 

(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

- 91 -



(lisp-invoker30 (i lisp-invoker) 

(A I203 (i I)))) 

This interpretation of the Entering concept is then used to fill the role of the 

topic role of the how question that constitutes the representation of the rest of the sen­

tence. 

Final interpretation of input: 

(A How-Q207 (i How-Q) 

(topic206 (i topic) 

(A Invoke-Lisp30 (i Invoke-Lisp) 

(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

(lisp-invoker30 (i lisp-invoker) 

(A I203 (i I)))))) 

This how-question, along with the reinterpreted topic concept, is then passed along 

to the next stage of UC processing. UC then prints the answer as follows. 

Calling UC on input: 

(A How-Q207 (i How-Q) 

(topic206 (i topic) 

(A Invoke-Lisp30 (i Invoke-Lisp) 

(lisp-invoked30 (i lisp-invoked) 

(A Lisp58 (i Lisp))) 

(lisp-invoker30 (i lisp-invoker) 

(A I203 (i I)))))) 

UC: You can enter lisp by typing lisp to the shell. 

The instance of the concept Invoke-Lisp30 is still represented in the- knowledge­

base as being an instance of a target concept of the Enter-Lisp concept. When UC's 

generator encounters such a situation, it generates an English description of the concept 

in terms of the corresponding source concept from the same metaphor. In this way, UC 

produces natural output that takes the users initial language into account. Therefore, UC 

chooses to describe the Invoke-Lisp concept in terms of the source concept Entering. 

-92-



5.4. Summary 

The kind of metaphor handled by MIDAS corresponds to a generalization of the 

class discussed by Gentner (1981, 1988). Gentner notes that it is typically the case that 

when there is a semantic mismatch between a verb and its arguments, the verb is being 

used metaphorically. She calls this the Verb-Mutability Effect. She shows that when chil­

dren are presented with novel verb object pairings, the subjects usually reinterpret the 

verb metaphorically. In fact, it seems that this phenomenon properly corresponds to 

words that can be said to have valence. Consider the following examples. 

(8) John is in Emacs 
(9) This is a big idea. 
(10) Einstein is the father of modern physics. 

In (8), the preposition in is used metaphorically while its argument Emacs refers 

directly. Similarly in (9), the adjective big is being metaphorically applied to an idea. 

Example (10) illustrates the case where a noun like father that can be said to have 

valence is used metaphorically. Therefore, the actual surface-level metaphors handled 

by MIDAS correspond to a generalization of Gentner's class to include any part of 

speech that has valence. 

The main thrust of this approach to metaphor interpretation is the application of 

specific knowledge about the conventional metaphors in the language. The initial parse 

of a sentence produces a primal representation that is essentially a set of constraints on 

the final representation derived from the grammar and lexicon. The main task of the 

interpreter is to find any interpretation of the input, metaphorical or literal, that is 

coherent with the constraints posed by this primal representation. 

- 93-



Chapter 6 

Overview of Metaphor Extension 

6.1. Introduction 

The previous chapter detailed the process by which conventional metaphors are 

interpreted. The remaining chapters of this thesis are concerned with the acquisition of 

new metaphorical knowledge. When the interpretation algorithm described in Chapter 5 

fails to find any interpretation coherent with the input, this is taken to be evidence that an 

unknown metaphor is being used. 

The purpose of this chapter is to give an overview of the general approach to learn­

ing new metaphors and to the component of MIDAS that embodies this approach - the 

Metaphor Extension System (MES). The full details of this approach and the MES will 

be spread out over the next three chapters. 

6.2. The Learning Approach 

The approach taken here to the understanding of new or unknown metaphors is 

called the Metaphor Extension Approach. The basic thrust of this approach is that a new 

metaphor can best be understood by extending an existing metaphor in a systematic 

fashion to cover a new use. The basis for this approach is the belief that the known set of 

conventional metaphors constitutes the best source of information to use in understand­

ing new metaphors. Underlying this strategy is the assumption that the new metaphor 

will be systematic with the existing metaphors in one of the ways described in Chapters 3 

and4. 

Note that a metaphor that MIDAS cannot interpret may be an indication of one of 

two situations. It may signal the existence of a metaphor that is a conventional part of the 

language that the system has not yet acquired. Alternatively, it may reflect the use of a 

-94-



truly novel metaphor, a metaphor that would not be considered as a conventional pan of 

the language. The metaphor extension approach makes no attempt to differentiate these 

situations. In either case, the ease with which the metaphor is understood will be a func­

tion of how close the new metaphor is to one of the known metaphors. If the new meta­

phor is truly novel and not based on existing metaphors then it will probably not be 

understood. By the same token, if it is a conventional and the system has no knowledge 

of other metaphors close to this new one, it will also fail. 

The success of the approach, therefore, lies in the robustness and systematicity of 

the knowledge-base of known metaphors. As more and more systematic metaphors are 
added to the knowledge-base, the likelyhood of an unknown conventional metaphor 

being understood increases. Although novel poetic metaphors are beyond the scope of 
this thesis, the work of Lakoff (1986) and Turner and Lakoff (1988) shows that novel 

poetic metaphors are principally based on extensions to, and combinations of, metaphors 

that are already pan of the language. This is further indication that detailed knowledge 

of the metaphors in the language is crucial to the understanding and acquisition of both 

conventional and novel metaphors. 

6.3. Context 

The Metaphor Extension Approach deliberately avoids the use of one the main 

sources of knowledge used in previous approaches, namely, the unrestricted use of con­
textual information. As described in Chapter 2, previous approaches to metaphor and to 
language acquisition have frequently assumed that the meaning of an unknown word or 

phrase is already a pan of the discourse context. It has either been inferred from extra­
linguistic information or from other pieces of text. The learning task was seen as assign­
ing the meaning of the new lexical item to one of the small number of concepts already 

in the context. 

There are a number of practical and theoretical reasons for the decision to eschew 

the use of contextual information. The main practical reason was that the UNIX Consul­
tant testbed for the theory had no context wider than the immediate sentence in which the 

metaphor occurred. A more compelling reason has to do with the claims being made 

about the learning behavior itself. If it can be shown that certain kinds of learning are 

possible using only long-term semantic knowledge about existing metaphors and the con­
tents of the sentence containing the new metaphor then that is a significant claim. 

6.4. The Extension Approach 

The systematicities described in Chapters 3 and 4 form the basis for the Metaphor 

Extension Approach. When a new use is encountered the system attempts to find a 

known metaphor that can be related to this new use by one of the known systematicities. 

- 95-



Three kinds of related metaphors are recognized, yielding three kinds of extension infer­

ences: similarity extension, core extension and combined extension. 

Similarity Extension: 

Understanding a new metaphor by using a known metaphor that is judged to be 

similar to the new use. 

Example: 
Understanding Kill a process by using Kill a conversation. 

Core Extension: 

Understanding a new metaphor by using a known metaphor that is core related 

to the new use. 

Example: 

Understanding Get out of lisp by using Get into lisp. 

Combined Extension: 

Understanding a new metaphor by using a known metaphor that is both core­

related and similar to the new use. 

Example: 

Understanding Exit emacs by using Enter mail. 

Figure 1: Extension Inferences 

6.4.1. Similarity Learning 

Consider the situation where (1) is encountered and the interpretation system can 

find no appropriate metaphor to apply to account for this case. Assume, however, that 

the system does have knowledge of the specific In-Emacs metaphor, shown in Figure 2, 

that allows it to understand Example (2). 

(1) I am in Lisp. 
(2) I am in Emacs. 

Using the In-Emacs metaphor to understand Example (1) is an instance of a simi­

larity extension inference. This kind of inference extends a metaphorical structuring of a 

concept similar to the target concept of the current example. In this case, the idea is to 

-96-



.... 

use the known metaphor underlying the phrase in emacs to infer the meaning of in lisp. 

This type of inference is based on the conceptual similarity between the target concept of 

the new metaphor and the target concept of a known metaphor. The fundamental 

assumption is that a metaphor with the same source concept being applied to similar tar­

get concepts will have a similar meaning. 

Enclosed -State Emacs-Active 

in-emacs-map 

enclosed-user 

enclosing -used 

Figure 2: In-Emacs Metaphor 

A similarity extension inference is a two step process of abstraction followed by 

concretion. The target concept of the candidate metaphor is abstracted to a concept that 

can accept the input target concepts of the new example. This abstract concept is then 

replaced by a more specific concept via a concretion inference. Remember that the con­

cretion mechanism takes as input, a set of constraints on the concept being classified, and 

an abstract known ancestor of this concept. It returns the most specific concept beneath 

this initial ancestor that can accommodate the given constraints. The combined 

abstraction-concretion inference is similar to concretion in that it takes a set of con­

straints on the input concept and returns the most specific concept that can account for 

the inputs. It differs from concretion in that instead of being given an abstract ancestor 

of the final concept to search from, it is instead given an overly specific.sibling or cousin 

from which to begin its search. 

In this example, the target concept of the known metaphor, using-Emacs, is 

replaced by the more abstract concept comp-Process-Active during the initial abstrac­

tion step of the inference. This abstraction inference is intended to find the first ancestor 

of Emacs-Active that can accept the concept Lisp in the role played by the concept 

Emacs. 

In the concretion step, the children of the Comp-Process-Active concept are 

examined to see if any of those involve the target concept of the new example, Lisp, in 

-97-



["-7:'-A'"~Jt-__ _...s'---~@f-----'c"-----t~~::~~·:·; 
D/./ \\n .···· 

............... .... ........... 

~-~--~ ~----~----
Lisp-Active Emacs-Active 

Enclosed-State 

Figure 3: Emacs-Lisp Similarity Connection 

an appropriate role. In the current example, the concept Camp-Process-Active is 
replaced by the more specific concept Lisp-Active, which represents the state of using 
the lisp system. Figure 3 shows the relevant pathway through the network that led to this 

concept 

The following annotated trace shows the actual processing of Example ( 1 ). In this 

example, the system learns the meaning of in lisp by applying a similarity inference to 
the known In-Emacs metaphor. The sections of the processing relevant to similarity 
inferences are annotated. The details of the overall algorithm are discussed below in Sec­

tion 6.5. 

> (do-sentence) 

Interpreting sentence: 

I am in lisp. 

Interpreting primal input. 

(A Enclosed-State3 (i Enclosed-State) 

- 98-



(agent92 (i agent) (A I21 (i I))) 

(patient92 (i patient) (A Lisp4 (i Lisp)))) 

Concreting input relations. 

Concreting 

Concreting 

patient to enclosing. 

agent to enclosed. 

Interpreting concreted input. 

(A Enclosed-State3 (i Enclosed-State) 

(enclosed3 (i enclosed) (A I21 (i I) l) 

(enclosing3 (i enclosing) 

(A Lisp4 (i Lisp)))) 

Failed interpretation: Enclosed-State3 as Enclosed-State. 

Failed interpretation: Enclosed-State3 as In-Emacs. 

No valid interpretations. Attempting to extend existing metaphor. 

=========================================================== 
Entering Metaphor Extension System 

==~======================================================== 

Searching for related known metaphors. 

Metaphors found: In-Emacs Entering-Invoke-Emacs Enter-Association 

Candidate metaphor In-Emacs has ranking 2 

Candidate metaphor Entering-Invoke-Emacs has ranking 3 

Candidate metaphor Enter-Association has ranking 7 

Selecting metaphor In-Emacs to extend from. 

(A In-Emacs (j Metaphor-Schema) 

(in-emacs-map Enclosed-State ~ Emacs-Active) 

{enclosing-used enclosing ~ active-emacs) 

{enclosed-user enclosed~ active-emacs-user)) 

At this point in the processing, the system has collected a relevant set of metaphors, 

-99-



and has chosen the In-Emacs metaphor for further processing. 

Attempting a similarity extension inference. 

Extending similar metaphor In-Emacs with target concept Emacs-Active. 

Abstracting Emacs-Active to ancestor concept Comp-Process-Active producing 

abstract target meaning: 

(A Comp-Process-Active2 

(i Comp-Process-Active) 

(running-comp-proc2 (i running-comp-proc) 

(A Lisp4 (i Lisp))) 

(running-comp-proc-user2 

(i running-comp-proc-user) (A I21 (i I)))) 

The first step in the similarity extension inference is to abstract the target concept of 

the related metaphor to a point in the hierarchy where the current target concepts can be 

accommodated. In this case, the target concept Emacs-Active is abstracted to the 

comp-Process-Active concept, representing the abstract notion of a process being used. 

This abstraction is primarily based on the target role active-emacs in the original target 

concept This role is abstracted to the concept running-comp-proc in the concept 

Comp-Process-Active. The running-comp-proc role is constrained to be filled by a 

concept dominated by Computer-Process. This constraint can accommodate the 

specified target concept Lisp. The abstraction process stops at this concept. 

Concreting target concept Comp-Process-Active to Lisp-Active 

producing concreted meaning: 

(A Lisp-Active2 (i Lisp-Active) 

(active-lisp2 (i active-lisp) 

(A Lisp4 (i Lisp))) 

(active-lisp-user2 (i active-lisp-user) 

(A I21 (i I)))) 

The abstract Comp-Process-Active concept is now concreted to find the most 

specific desce-ndent that can take the input concepts. In this case, the most specific des­

cendent cor 't of comp-Process-Active that can take the input concepts is the 

Lisp-Active concept. A new instance of this concept is, therefore, created to represent 

- 100-



the intended target meaning of the new use. 

Creating new metaphor: 

Mapping main source concept Enclosed-State to main target concept 

Lisp-Active. 

Mapping source role enclosed to target role active-lisp-user. 

Mapping source role enclosing to target role active-lisp. 

(A Enclosed-State-Lisp-Active (i In-Metaphor) 

(enclosing-active-lisp-map enclosing ~ active-lisp) 

(enclosed-active-lisp-user-map enclosed ~ active-lisp-user) 

(enclosed-state-lisp-active-map Enclosed-State~ Lisp-Active)) 

Final interpretation of input: 

(A Lisp-Active2 (i Lisp-Active) 

(active-lisp2 (i active-lisp) 

(A Lisp4 (i Lisp))) 

(active-lisp-user2 (i active-lisp-user) 

(A I21 (i I)))) 

A full analysis of the nature and use of similarity among metaphors for the pur­

poses of learning are given in Chapter 8. 

6.4.2. Core Extensions 

Consider the situation where (3) is encountered, and MIDAS can find no appropriate 

metaphor that can account for this use of get into. It does, however, have knowledge of 

the In-Emacs metaphor that allows it to understand (4). 

(3) How can I get into emacs? 
(4) I am in emacs. 

Using the In-Emacs metaphor to understand Example (3) is an instance of a core­

extension inference. A core-extension inference extends an existing partial metaphorical 

structuring of a target concept when a new metaphor is encountered that is core-related to 

the already known metaphor. Briefly, concepts may be said to be core-related when one 

of the concepts is, in effect, completely contained within the definition of the other. In 

the case of Examples (3) and (4), the concept Entering completely contains as a subpart 

the concept of Enclosing, underlying (4). Two concepts may also be said to be core-

- 101 -



related if they share a common contained concept. 

A core-extension inference exploits the core-relationship between the source con­

cept of the known metaphor and the source of the new metaphor to identify the intended 

target concept of the new example. The source core-relationship is used by matching it 

against relations directly attached to the target concept of the known metaphor. The rela­

tion in the target domain that best matches the source relation hierarchically is taken to 

point at the intended target concept. 

The basis for this approach is that conceptual core-relationships among words in 

the source domain will be at least partially preserved in the target domain. Remember 

that this preservation of core-relations is captured by Metaphor Preservation Principle, 

introduced in Chapter 3. 

Metaphor Preservation Principle: The metaphorical use of core-related words 
in a given target domain will hierarchically preserve the core-relationships 

established among the corresponding words in the source domain. 

The matching part of a core extension inference is essentially an analogical match­

ing inference based upon an abstraction hierarchy. The fundamental assumption is that 

there will be a common structuring of the concepts in the source and target domains at 

some level of abstraction. Note, however, that this analogical matching is done in the 

context of an existing panial metaphorical structure. The known metaphor establishes a 

highly constrained object correspondence, as a context for funher matching. It is this ini­

tial partial structure provided by the previously understood metaphor that makes the 

matching possible. 

In the current example, the system is not apply;ng a blind analogical match from 

the domain of enclosures to the domain of compute: processes. Rather the analogical 

match is of the form: 

In:Enter:: Using-Emacs:? 

In other words, given the fact that we know what in emacs means, we must deter­

mine which target concept best explains the meaning of enter emacs. It is the task of the 

core-extension inference is to find this target concept. 

In this case, the result relationship between the source concepts Entering and 

Enclosed-State is used to find the intended target concept Invoke-Emacs. The 

result relation between the concepts Entering and Enclosed-State is matched 

against the relations attached to the target concept Emacs-Active, yielding the concept 

Invoke-Emacs. Figure 4 shows the relevant relationships in this example. 

The following annotated trace shows the processing of Example (3). In this exam­

ple, the system learns the meaning of get into emacs by applying a core-extension infer­

ence to the known In-Emacs metaphor. The sections of the processing relevant to core-

- 102-



Enclosed-State Emacs-Active 

in-emacs-map 

enclosed-user 

enclosing-used 

s 

Entering Invoke-Emacs 

s s 

Figure 4: Entering Enclosed Core Connection 

extension inference are annotated. The details of the overall algorithm are discussed 

below in Section 6.5. 

> (do-sentence) 

Interpreting sentence: 

How can I get into emacs? 

Interpreting primal input. 

(A Entering4 (i Entering) 

(agent91 (i agent) (A I20 (i I))) 

(patient91 (i patient) 

- 103-



(A Emacsl2 (i Emacs)))) 

Concreting input relations. 

Concreting patient to entered. 

Concreting agent to enterer. 

Interpreting concreted input. 

(A Entering4 

(enterer4 

(entered4 

(i Entering) 

(i enterer) 

(i entered) 

(A I2 0 ( j I) ) ) 

(A Emacsl2 (i Emacs)))) 

Failed interpretation: Entering4 as Entering. 

Failed interpretation: Entering4 as Enter-Association. 

No valid interpretations. Attempting to extend existing metaphor. 

Entering Metaphor Extension System 

Searching for related known metaphors. 

Metaphors found: In-Emacs Enter-Associa~ion 

Candidate metaphor Enter-Association has ranking 6 

Candidate metaphor In-Emacs has ranking 2 

The system finds and selects the existing In-Emacs metaphor to use to learn this 

new use. 

Selecting metaphor In-Emacs to extend from. 

(A In-Emacs <i Metaphor-Schema) 

(in-emacs-map Enclosed-State ~ Emacs-Active) 

(enclosing-used enclosing ~ active-emacs) 

(enclosed-user enclosed~ active-emacs-user)) 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor In-Emacs 

with target concept Emacs-Active. 

- 104-



This is a direct extension inference. 

The core-extension inference first finds the core connection between the source con­

cept of the new metaphor and the source of the known metaphor. This connection is then 

applied to the target concept of the In-Emacs metaphor to find the appropriate filler of 

the path among the target concepts. 

Applying source path: 

Entering ~ enter-res ~ Enclosed-State 

to target concept Emacs-Active yields target connection. 

Emacs-Active ~ emacs-invoke-result* ~ Invoke-Emacs 

Applying source path yields target concept Invoke-Emacs. 

(A Invoke-Emacs2 (i Invoke-Emacs) 

(emacs-invoker2 (i emacs-invoker) 

(A I20 (i I))) 

(emacs-invoked2 (i emacs-invoked) 

(A Emacs12 (i Emacs)))) 

The system finds a hierarchical match between the source path relation enter-res 

and the target path concept emacs-invoke-res. Based upon this match, the concept 

Invoke-Emacs, attached to this relation, is chosen as the intended target concept. A new 

instance of this concept is created with the appropriate fillers from the primal representa­

tion. 

Mapping main source concept Entering to main target concept Invoke-Emacs. 

Mapping source role enterer to target role emacs-invoker. 

Mapping source role entered to target role emacs-invoked. 

(A Entering-Invoke-Emacs (i Metaphor-Schema) 

(entered-emacs-invoked-map entered ~ emacs-invoked) 

(enterer-emacs-invoker-map enterer ~ emacs-invoker) 

(entering-invoke-emacs-map Entering~ Invoke-Emacs)) 

Final interpretation of input: 

(A How-Q18 (i How-Q) 

(topic18 (i topic) 

(A Invoke-Emacs2 (i Invoke-Emacs) 

(emacs-invoker2 (i emacs-invoker) 

(A I20 (i I))) 

- 105-



(emacs-invoked2 (i emacs-invoked) 

(A Emacsl2 (i Emacs)))))) 

A full analysis of the nature and use of core-relationships for learning is given in 

Chapter 9. 

6.5. The Extension Algorithm 

The basic steps of the metaphor extension approach are outlined in the following 

sections. The details of each of these steps are then illustrated in terms of an annotated 

example. The full details of the Metaphor Extension System, which embodies the 

approach, are given in the next chapter. 

Step 1: Characterize the new input. The new input consists of the primal represen­

tation for which the interpreter could not find an appropriate meaning. Partial source and 

target components of a new metaphor are extracted from this primal representation. The 

terms current source and current target will be used to refer to the source and target con­

cepts derived from the input example. 

Step 2: Search for related metaphors. This step searches for any known metaphors 

that are potentially related to this new use. The search consists of an attempt to find a 

path or paths through the KODIAK network from the current source concepts to the 

current target concepts through a known metaphor. A metaphor contained in such a path 

is judged to be relevant. The details of the search strategy will be given in the next 

chapter. 

Step 3: Evaluate the set of candidate metaphors found in Step 2. The purpose of 

this step is to select a metaphor from the set found in Step 2 to be used as the basis for 

understanding the new use. This choice is based on a set of criteria to determine the 

metaphor that is closest conceptually to the current example. Two factors contribute to 

this conceptual distance. The first is the length of the core-relationship path from the 

source of the input concept to the source of the candidate metaphor. The second cost is 

the hierarchical distance from the target concepts of the candidate metaphor to the known 

target concepts of the input example. The metaphor with the shortest conceptual distance 

is chosen as the candidate metaphor. 

Step 4: Apply the candidate metaphor found in the previous step to the input con­

cepts. The candidate metaphor is applied to the current example based on its relationship 

to the current input concepts. The shape of the path connecting the primal concepts to the 

candidate metaphor indicates the type of inference that must be performed to extract the 

intended target meaning from the candidate metaphor. Depending on this path shape, a 

core extension inference, similarity extension inference, or a combined inference may be 

performed. 

- 106-



Step 5: Store the new metaphor. Once the intended target meaning for the current 

example has been determined, a new metaphor is created to represent this new use. A 

metaphor-sense is created whose source concepts are the source concepts extracted from 

the primal representation. The target concepts are the concepts found in Step 4. New 

metaphor-maps are created to associate each of these source target pairings. These new 

maps are then attached to the newly created metaphor-sense. The new metaphor-sense 

and its component metaphor-maps are then classified in the appropriate place in the 

metaphor hierarchy. 

6.6. Annotated Example 

The five steps of the extension system will now be illustrated by the following 

example. This example combines a core-related inference and a similarity inference. 

> (do-sentence) 

Interpreting sentence: 

How can I get out of emacs? 

Interpreting primal input. 

(A Exiting2 (i Exiting) 

(agent50 (i agent) (A I3 (i I))) 

(patient50 (i patient) (A Emacsl (i Emacs)))) 

Concreting input relations. 

Concreting patient to exited. 

Concreting agent to exiter. 

The thematic relations specified by the parser are replaced here by the relations 

specific to the given primal concept. 

Interpreting concreted input. 

(A Exiting2 (i Exiting) 

(exiter2 (i exiter) (A I3 (i I))) 

(exited2 (i exited) (A Emacsl (i Emacs)))) 

Failed interpretation: Exiting2 as Exiting. 

No valid interpretations. Attempting to extend existing metaphor. 

- 107-



At this point, MIDAS has determined that there is no known coherent interpretation 

of the given primal input. It, therefore, appeals to its Metaphor Extension System in an 

attempt to extend an existing metaphor to explain this new use. 

=========================================================== 
Entering Metaphor Extension System 

=========================================================== 

Searching for related known metaphors. 

Metaphors found: Enter-Lisp Enter-Association 

Based on the characteristics of the primal input, the system 1mt1ates a search for 

relevant known metaphors. In this case, the system finds two known metaphors that 

share the concept Entering as a source concept. These metaphors are relevant by virtue 

of the fact that the source concept Entering is core related to the source concept Exit­

ing of the new metaphor. 

Candidate metaphor Enter-Association has ranking 8. 

Candidate metaphor Enter-Lisp has ranking 4. 

Selecting metaphor Enter-Lisp to extend from. 

In the third step of the algorithm, the candidate metaphors are ranked according to 

their conceptual distance from the primal input concepts. In this case, the metaphor 

Enter-Lisp is selected for continued processing because of its closeness to the given 

inputs. The ranking of this metaphor results from a core-relationship path of length 2 

from Exiting to Entering, and a conceptual distance hierarchical path from Lisp to 
Emacs through the common ancestor computer-Process of length 2, resulting in a total 
ranking of 4. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Enter-Lisp 

with target concept Invoke-Lisp. 

This is an intermediate extension inference. 

In the next step, the system attempts to apply the new input example. In this case, 

the candidate metaphor is in a combined similarity and core-relationship to the primal 
input concepts. It is a core-related extension by virtue of the relationship between the 

candidate source concept Entering and the source concept of the new metaphor, 

- 108-



Exiting. The similarity relationship arises from the hierarchical connection from the 

target concept Lisp in the candidate metaphor to the presumed target concept Mail in 

the new example. 

Applying source path: 

Exiting ~ exit-pre ~ Enclosed-State ~ enter-res* ~ Entering 

to target concept Invoke-Lisp yields target connection. 

Invoke-Lisp ~ lisp-invoke-result ~ Lisp-Active 

~ lisp-uninvoke-pre* ~ Uninvoke-Lisp 

Applying source path yields target concept Uninvoke-Lisp. 

The first step in applying a combined core-related similarity inference is the applica­

tion of the source core-relation path to the target domain to yield the appropriate target 

concept In this case, the task is to apply the path connection from Entering to Exit­

ing, to the target concept Invoke-Lisp of the candidate metaphor. Applying this path 

yields the concept uninvoke-Lisp. At this point, the situation is the same as if the sys­

tem had used an equivalent similarity related Exit-Lisp metaphor. 

Abstracting Uninvoke-Lisp to ancestor conceptUninvoke-Comp-Process 

producing abstract target meaning: 

(A Uninvoke-Comp-Processl (i Uninvoke-Comp-Process) 

(comp-process-uninvokedl (i comp-process-uninvoked) 

(A Emacsl <i Emacs))) 

(comp-process-uninvokerl (i comp-process-uninvoker) 

(A I3 (i I)))) 

The MES now begins the combined abstraction-con~retion inference designed to 

find a sibling or cousin concept to Invoke-Lisp that can accommodate the input con­

straints of the primal representation. In this example, it abstracts the target concept 

uninvoke-Lisp to the concept Uninvoke-Comp-Process, which is the most specific 

ancestor of uninvoke-Lisp that can accept the fillers in the primal representation. In 

particular, it can accept the filler Emacs in the role of the comp-process-uninvoked. 

At this point, an instantiation of the concept Uninvoke-Comp-Processl is made with the 

appropriate fillers filled in. This is shown above as the concept Uninvoke-Comp-

- 109-



Processl with the filled in slots Emacsl and I3. 

Concreting Uninvoke-Comp-Processl to concept Uninvoke-Emacs. 

Yielding concept 

(A Uninvoke-Emacsl (i Uninvoke-Emacs) 

(emacs-uninvokerl (i emacs-uninvoker) 

(A I3 (i I))) 

(emacs-uninvokedl (i emacs-uninvoked) 

(A Emacsl (i Emacs)))) 

The next phase in the application step is to find the most specific concept beneath 

this one that can accommodate the fillers to this concept. In this case, it is possible to 

concrete this general Uninvoke-Comp-P recess to the more specific concept 

Uninvoke-Emacs. (fhis is actually the concept at which the answer to the users question 
is stored). Since the concretion phase selects this concept as the most specific concept 

available, the application step stops at this point. 

Mapping main source concept Exiting to main target concept Uninvoke-Emacs. 

Mapping source role exiter to target role emacs-uninvoker. 

Mapping source role exited to target role emacs-uninvoked. 

(A Exiting-Uninvoke-Emacs (i Metaphor-Schema) 

(exited-emacs-uninvoked-map exited -? emacs-uninvoked) 

(exiter-emacs-uninvoker-map exiter -? emacs-uninvoker) 

(exiting-uninvoke-emacs-map Exiting-? Uninvoke-Emacs)) 

Step 5 of the algorithm results in the creation of a new metaphor-sense to represent 

this newly understood use. Metaphor-maps are created linking the corresponding con­

cepts in the source and target domains. These metaphor-maps are then tied to the new 
metaphor-sense via component-map relations. The newly created metaphor-maps and 

the metaphor-sense are then indexed into the metaphorical hierarchy in the appropriate 

places. 

Final interpretation of input: 

(A How-Q3 (i How-Q) 

(topic3 (i topic) 

(A Uninvoke-Emacsl (i Uninvoke-Emacs) 

(emacs-uninvokerl (i emacs-uninvoker) 

(AI3 (ii))) 

(emacs-uninvokedl (i emacs-uninvoked) 

(A Emacsl (i Emacs)))))) 

- 110-



Since this is a UC question, the final representation of the user's question with the 

properly interpreted metaphor is passed along to UC for further processing. 

Calling UC. 

You can get out of emacs by typing ~x~c to emacs. 

Based on the previous example, the system has now acquired a new metaphor. This 

metaphor can be used directly in future metaphor interpretation and as a candidate for 

further extensions. In the following example, the system shows how this new metaphor 

can be applied directly during the interpretation process. 

> (do-sentence) 

Interpreting sentence: 

How can I get out of emacs? 

Interpreting primal input. 

(A Exiting8 (i Exiting) 

(agent66 (i agent) (A I9 (i I))) 

(patient66 (i patient) (A Emacs? (i Emacs)))) 

Concreting input relations. 

Concreting patient to exited. 

Concreting agent to exiter. 

Interpreting concreted input. 

(A Exiting8 (i Exiting) 

(exiter8 (i exiter) (A I9 (i I))) 

(exited8 (i exited) (A Emacs? (i Emacs)))) 

Failed interpretation: Exiting8 as Exiting. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Exiting-Uninvoke-Emacs. 

(A Exiting-Uninvoke-Emacs (i Metaphor-Schema) 

(exited-emacs-uninvoked-map exited ~ emacs-uninvoked) 

(exiter-emacs-uninvoker-map exiter ~ emacs-uninvoker) 

- 111 -



(exiting-uninvoke-emacs-map Exiting~ Uninvoke-Emacs)) 

As in the previous example, the literal interpretation still fails. However, there is 

now a direct metaphorical interpretation whose source concept is attached to the primal 

input concept of Exiting. The direct application of this metaphor results in the creation 

of an instance of the Uninvoke-Emacs concept. 

Final interpretation: 

(A Uninvoke-Emacs7 (i Uninvoke-Emacs) 

(emacs-uninvoked7 (i emacs-uninvoked) 

(A Emacs7 (i Emacs))) 

(emacs-uninvoker7 (i emacs-uninvoker) 

(A I9 (i I)))) 

The final interpretation of the primal concept is assigned to its proper role in the 

representation of the rest of the user's utterance. 

Final interpretation of input: 

(A How-Q9 (i How-Q) 

(topic9 (i topic) 

(A Uninvoke-Emacs7 (i Uninvoke-Emacs) 

(emacs-uninvoked7 (i emacs-uninvoked) 

(A Emacs7 (i Emacs))) 

(emacs-uninvoker7 (i emacs-uninvoker) 

(A I9 (i I)))))) 

The newly interpreted question is then passed along to UC for further processing. 

Calling UC. 

You can get out of emacs by typing x c to emacs. 

6. 7. Summary 

The Metaphor Extension Approach is a method of learning new metaphors that uses 

the existing set of well understood metaphors as the main source of knowledge. The 

main thrust of the approach is to find a previously understood metaphor that is relevant to 

the new use that can be used to determine the meaning the intended target meaning of the 

- 112-



new use. Two basic kinds of inferences are used in this extension process. These infer­

ences are based upon two fundamental kinds of relationships in the system of known 

metaphors. Similarity extension inferences are used to extend existing metaphors that 

are judged to be hierarchically similar to the new use. Core extension inferences are used 

to extend existing metaphors to cover core-related new uses. 

The next chapter describes the details of the Metaphor Extension System that embo­

dies the approach outlined here. The details of Step 4, the step that actually finds the 

intended target meaning when given a candidate metaphor, will be discussed in Chapters 

8 and 9. Chapter 8 gives the details of similarity learning. Chapter 9 gives the details of 

core-extension learning. Finally Chapter 10 presents a detailed series of examples and 

analyses from the previous literature. 

- 113-



Chapter 7 

The Metaphor Extension System 

7.1. Introduction 

This Chapter describes the details of the learning component of MIDAS - the Meta­

phor Extension System (MES). TheMES is called when, during the analysis of an input 

sentence, MIDAS can find no coherent conventional reading. The MES attempts to 

determine the meaning of this new use by extending an existing metaphor. Once the 

correct meaning has been determined, a new metaphor is created so that this new use can 

be recognized directly in future processing. 

7.2. TheMES Algorithm 
In this section, I will first briefly describe the five steps of the algorithm. 

The detailed operation of each step will then be explained in terms of an example from 

the system. 

Step 1: Characterize the new input. Partial source and target components of a new 

metaphor are extracted from the preliminary representation accepted as input from the 

interpreter. The terms current source and current target will be used to .refer to the 

source and target concepts derived from the input example. 

Step 2: Search for related metaphors. This step searches for any known metaphors 

that are potentially related to this new use. The search consists of an anempt to find a 

path or paths through the network from the current source to the current target concepts 

that contains a known metaphor. A metaphor contained in such a path is judged to be 

relevant. 

Step 3: Evaluate the set of candidate metaphors found in Step 2. The purpose of 

this step is to select a metaphor from the set found in Step 2 for further processing. This 

- 114-



choice is based on a set of criteria to determine the metaphor that is closest conceptually 

to the current example. 

Step 4: Apply this previously understood metaphor to the current example. The 

candidate metaphor is applied to the current target based on the relationship between the 

candidate mapping and the current example. 

Step 5: Store the new metaphor. Create and store a new metaphor consisting of the 

source and target concepts identified in the above steps and appropriate associations 

between them. This new metaphor will be used directly when future instances of this 

metaphor are encountered. 

I will now step through a trace from MIDAS that will illustrate each of these steps. 

Consider the following example. 

(1) John got the flu. 

The situation is that MIDAS has no knowledge of any metaphors associated with the 

concept Flu. It does, however, have knowledge of the Give-Cold metaphor, as 

described in Chapter 4. In the following example, the system encounters Example (1), 

and learns the meaning of this new use through the use of the Give-Cold metaphor. 

This is an instance of a combined similarity core-extension inference. The similarity 

connection results from the close similarity connection between the concepts Cold and 

Flu. The core-extension relationship is through the common core concept, Having, 

shared by both Getting and Giving. 

7.2.1. Step 0: Initial Processing 

The interpreter parses the input sentence and determines that it can find no 

coherent conventional interpretation for this sentence. It, therefore, passes the primal 

representation along to the MES. 

> (do-sentence) 

Interpreting sentence: 

John got the flu. 

Interpreting primal input. 

(A Gettingl8 (i Getting) 

(agent93 (i agent) (A John72 (i John))) 

(patient93 (i patient) (A Flu31 (i Flu)))) 

\.. -115-



Concreting input relations. 

Concreting patient to gotten. 

Concreting agent to getter. 

Interpreting concreted input. 

(A GettinglB (i Getting) 

(getterlB (i getter) (A John72 (i John))) 

(gottenl8 (i gotten) (A Flu31 (i Flu)))) 

MIDAS finds that neither the literal interpretation nor the single known metaphori­

cal interpretation can meet the constraints posed by this primal representation. 

Failed interpretation: Gettingl8 as Getting. 

Failed interpretation: Gettingl8 as Get-Grade. 

No valid interpretations. Attempting to extend existing metaphrr. 

7.2.2. Step 1: Characterize The New Input 

The input to the MES consists of the primal representation produced by the parser. 

The first step is to take this primal representation, and isolate the potential source and tar­

get components of this new metaphor. 

Following the strategy laid out in Chapter 5, the main concept in the primal 

representation and its slots are taken to belong to the source of the new metaphor, the 

fillers of the slots are assumed to be concepts in the target domain. In this example, 

Getting along with its getter and gotten slots are taken to belong to the source 

domain. The concepts John72 and Flu31, which are the fillers of the getter and got­

ten slots, are taken to be part of the target domain. 

=========================================================== 

Entering Metaphor Extension System 

=========================================================== 

(A Gettingl8 (i Getting) 

(getterl8 (i getter) (A John72 (i John))) 

(gottenl8 (i gotten) (A Flu31 (i Flu)))) 

- 116-



7.2.3. Step 2: Collecting Relevant Metaphors 

This step collects all the known metaphors that may be relevant to this new use. 

Known metaphors are judged relevant to the new example based upon their relationship 

to the current source and target concepts isolated in Step 1. This stage of the algorithm 

uses a rather loose set of criteria for determining relevance. The main idea is to use this 

loose criteria to quickly produce a list of candidate metaphors. This list may include 

metaphors of only marginal relevance that will be eliminated in subsequent processing. 

teria. 
A known metaphor is considered relevant if it satisfies one of the following cri-

• The input source concept is the same as the source concept of the candidate 

metaphor. 

• The input source concept is core-related to the source concept of the candi­

date metaphor. 

The search begins at the input source concept, and spreads out to all the concepts 

core-related to the input source. Metaphors are added to the list of candidate metaphors 

as the search proceeds outward from the initial source concept. 

The following four steps make up the basic search algorithm that selects the prel­

iminary candidate set of relevant metaphors. 

Search Algorithm 

Step 1: Collect all the metaphors that have the input source concept as their source 

concept This step simply collects all the metaphors that share the input source concept as 

a source. 

Step 2: Find all the concepts that contain this concept as a core-metaphor, and col­

lect their metaphors. If the input source concept is a core concept then all the concepts 

core-related to this core are examined, and their metaphors collected. 

Step 3: Find all the concepts that are contained by this concept, and collect their 

metaphors. If the input source is not a core concept, but contains one or more core con­

cepts, then they are found in this step. 

Step 4 For each of these concepts found in step 3 find all the concepts that contain 

this concept. Collect the metaphors attached to these concepts. Step 3 basically shifts the 

search from an outlying concept to a core concept. This step then proceeds outward from 

the core to all the other core-related extensions to this core. 

The key component of the search is the ability to find concepts that are core-related 

to the input source concept. The requirements for core-related concepts, laid out in 

- 117-



Chapter 3, form the basis for this search. The use of these restrictive requirements 

ensures that this search step will find relevant metaphors quickly. The three requirements 

for determining if two concepts are core-related are reproduced here from Chapter 3. 

Relation Condition: There is at least one relation whose aspectuals are con­

strained by the main concepts underlying each of the concepts. 

Containing Condition: All of the slots of one of the concepts are equated to 

slots of the other concept. 

Shared Intermediate Condition: Two concepts may be said to be core­

related if they both satisfy the Relation and Containing conditions with a com­

mon third concept 

Recall that the key idea underlying these requirements is the notion that certain 

concepts serve as fundamental core concepts in the definitions of other concepts. These 

core concepts are said to be contained within the definitions of other concepts. For exam­

ple, the concept of Having is at the core of the definition of the concepts Giving and 

Getting. Both are defined as actions or events that result in a Having. The concept 

Having is, therefore, a core concept, while Getting and Giving are core-related to it. 

The search algorithm uses the above representational requirements to guide the search 

for these core and core-related concepts. 

In the current get the flu example, the search starts at the concept Getting. Step 1 

yields the metaphor Get-Grade, which has the concept Getting as a source. (Note that 

for expository purposes the system has been deprived of its normal knowledge number of 

a number of other Getting metaphors. This was done to force the system to select a dis­

tant metaphor in order to demonstrate a wider r: ·. ge of search and application inference 

behavior). This metaphor is collected as a potential candidate metaphor. This connec­

tion is shown in Figure 1. 

The second step yields no concepts that contain the concept Getting as a core 

concept Step 3, however, finds that Getting contains the concept Having as a core 

concept. In this case, Getting and Having satisfy the Containing condition. As shown 

in Figure 2, the relation getting-result links the two concepts and the haver and 

had aspectuals of the Having concept are both equated to aspectuals of the Getting 

concept 

Examination of the Having concept finds that it is the source of the metaphors 

Have-Permission and Have-State. Therefore, these are added to the list of candidate 

metaphors. The state of the search after this step is shown in Figure 2. 

In Step 4 the search proceeds out from the core concept Having to all the concepts 

that contain it as a core concept. (Excluding Getting which is where the search started.) 

At this point, the system finds that the concept Giving contains Having as a core con­

cept and has two metaphors attached to it. The Give-Cold and Give-Grade metaphors 

are collected into the final list of candidate metaphors. Figure 3 shows the final extent of 

- 118 -



Getting ----- S_o':r~----- ~.___G_e_t-G_ra_d_e _ _, 

Figure 1: Search After Step 1 

the search at the end of Step 4. 

The search described here considers a metaphor to be relevant based solely upon the 

relationship of the source concept of the candidate to the input source concepts. This will 

clearly result in a number of irrelevant metaphors, since it ignores the input target con­
cepts. In particular, it doesn't take into account the various kinds of similarity relation­
ships among target concepts introduced in Chapter 3. This similarity information, pro­
vided by the target concepts, is taken into account in the next step of the algorithm, 

which evaluates the candidates and chooses the most appropriate one for continued pro­
cessing. 

Searching for related known metaphors. 

Metaphors found: Get-Grade Have-Idea Have-Permission Have-State 

Give-Cold Give-Grade 

7.2.4. Step 3: Evaluating the Candidates 

The next step in the algorithm is to select one of the metaphors found in the previ­

ous step for further processing. This selection represents the known metaphor that is 

most likely to yield the intended meaning with the least amount of effort. 

In order to make this selection, the candidate metaphors are ranked based on their 

- 119-



, --1 Have-State 
Soul):(}- "" 

Getting Having : :""-- _source_1 ...... __ H_a_v_e-_Id_e_a _ ___, 

Source 
............... ~ Have-Pennission / 

Figure 2: Search After Step 3 

conceptual closeness to the input concepts specified in the primal representation. The 

basic approach taken is that the metaphor that is conceptually closest to the input con­

cepts will be the easiest to map with the highest degree of certainty. Two factors contri­

bute to this conceptual distance: 

1) The length of the core-relationship from the input source to the source of the 

candidate metaphor. 

2) A conceptual similarity measure indicating the distance from the input tar­

get concept to the target of the candidate metaphor. 

The core-relationship component of the evaluation measure is simply the length of 

the core-relationship from the source of the candidate metaphor to the source concept of 

the new input metaphor. Each relation in the core-relation path counts as 1. 

In the current example the core-relationship from the input concept Getting to 

the source< the candidate metaphor Giving consists of the relations getting-result 

and giving-result. This path leads from the concept the Getting through the inter­

mediate core concept Having to the concept Giving, yielding a path oflength 2. 

- 120-



Getting 

Give-Grade 

Having 

' ' 

Source 

Figure 3: Search After Step 4 

' ' ' ' ' 
/ 

/ 

/ 
/ 

Give-Cold 

/ 

/ 

/ 

Source 

The conceptual similarity component of the evaluation measure is computed by 

measuring the hierarchical distance between the input target concepts and their 

corresponding target concepts in the candidate metaphor. The maximum distance from 

among all the input roles is taken as the conceptual similarity measure for that metaphor. 

The hierarchical distance between two concepts is a measure of the distance 

between the concepts in the DOMINATE hierarchy. In the case where one of the con­

cepts is an ancestor of the other, the hierarchical distance is simply the number of DOM­

INATE levels from the ancestor to the descendent. As discussed in Chapter 3, the typical 

metaphorical similarity relationship involves a sibling or cousin relationship. In these 

cases, the hierarchical distance is the sum of hierarchical distances from each of the con­

cepts to their common ancestor. 

Consider the candidate metaphor Give-Cold, chosen as the best candidate in the 

current example. The input target concepts of John72 and Flu31 fill the input roles of 

getter and gotten, respectively. Based upon the metaphor-maps of the candidate 

metaphor, these input roles correspond to the target concepts cold-victim and 

infected-cold. These target roles are constrained to be members of the categories 

Person and Common-Cold, respectively. The similarity measure of this metaphor is, 

- 121 -



therefore, based on the hierarchical distances from Flu to Common-Cold and from John 

to Person. 

The common ancestor concept between the concepts Flu and common-Cold is the 

concept Disease. This concept directly dominates both Flu and Cold, therefore, the 

total hierarchical distance between these concepts is 2. The remaining input role 

involves an ancestor rather than sibling relationship. The concept Person directly dom­

inates the concept John, yielding the hierarchical distance from this role is 1. The final 

distance contributed by the hierarchical distance in this example is therefore 2. 

The total conceptual distance for the Give-Cold metaphor is set to 4. The core­

relationship contributes 2, and the hierarchical distance contributes 2. As shown below, 

this is the closest known metaphor from among all the relevant metaphors, and is passed 

along for further processing. 

While the conceptual distance metric described here has worked well in practice, it 

does have a number of shortcomings. It relies heavily on the notion that conceptual 

closeness is directly reflected as distance in the abstraction hierarchy. This kind of meas­

ure is extremely sensitive to how the knowledge-base designer has chosen to arrange the 

levels in the hierarchy. This issue will be more fully discussed in Chapter 11, along with 

some related weaknesses of the system. 

Evaluating candidate metaphor Get-Grade 

has a path length 0 

has a hierarchical distance 6 

giving ranking 6 

Evaluating candidate metaphor Have-Idea 

has a path length 1 

has a hierarchical distance 4 

giving ranking 5 

Evaluating candidate metaphor Have-Permission 

has a path length 1 

has a hierarchical distance 4 

giving ranking 5 

Evaluating candidate metaphor Have-State 

has a path length 1 

has a hierarchical distance 5 

giving ranking 6 

Evaluating candidate metaphor Give-Cold 

has a path length 2 

has a hierarchical distance 2 

giving ranking 4 

- 122-



Evaluating candidate metaphor Give-Grade 

has a path length 2 

has a hierarchical distance 6 

giving ranking 8 

Candidate metaphor Get-Grade has 

Candidate metaphor Have-Idea has 

ranking 

ranking 

6 

5 

Candidate metaphor Have-Permission has ranking 

Candidate metaphor Have-State has ranking 6 

Candidate metaphor Give-Cold has ranking 4 

Candidate metaphor Give-Grade has ranking 8. 

Selecting metaphor Give-Cold to extend from. 

(A Give-Cold (i Give-Metaphor Metaphor-Schema) 

(give-infect-res give-result ~ cold-inf-res) 

(given-infection given ~ infected-cold) 

(givee-infected givee ~ cold-victim) 

(giver-infector giver ~ cold-infector) 

(give-infect-map Giving~ Cold-Infect)) 

5 

7.2.5. Step 4: Applying the Candidate Metaphor 

This step in the algorithm takes the candidate metaphor and applies it to the input 

target concepts in an attempt to find the intended target meaning. The method used to 

find this meaning is dependent upon the relationship between the candidate metaphor and 

the input concepts. The following two chapters will provide the full details of how the 

candidate metaphor is applied depending on the type of its relation to the new use. In par­

ticular, Chapter 8 will discuss the processing of similarity-related metaphors, and 

Chapter 9 will discuss core-related candidate metaphors. The rest of this section will 

provide an overview of how the MES can handle combinations of these extension 

processes. 

The current get flu example is an instance of a combined core-extension and simi­

larity inference. The candidate metaphor is core related to the inputs by virtue of the con­

nection from the input source concept, Getting, to the source concept of the candidate 

target concept Giving. In addition, it is similarity related by virtue of the close similarity 

relationship between the input target concept Flu and the candidate target concept Cold. 

The application of a combined core-similarity candidate metaphor is a two phase 

process in which the core-relationship is applied first. An abstraction-concretion infer­

ence is then applied to the result of the first phase. In terms of the current example, this 

strategy attempts to understand get the flu from the Give-Cold metaphor by first 

transforming give a cold to get a cold and then using that to find the meaning of get the 

- 123 -



flu. This strategy is effectively the same as if the system had first encountered and under­

stood the get a cold metaphor in terms of the Give-Cold, and then subsequently had 

encountered the get the flu use. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Give-Cold 

with target concept Cold-Infect. 

This is an intermediate extension inference. 

At this point the MES has determined that the Give-Cold metaphor is a similarity 

and core-related candidate. In addition, it has determined, based upon the shape of the 

path, that the core-relationship between Getting and Giving is an intermediate exten­

sion type. 

Applying source path: 

Getting ~ get-result ~ Having ~ give-result* ~ Giving 

to target concept Cold-Infect yields target connection. 

Cold-Infect ~ cold-inf-res ~ Cold-Inf-State ~ bee-cold-res* 

~ Bec-Inf-W-Cold 

Applying source path yields target concept Bec-Inf-W-Cold. 

The first step applies the source core-relationship to the target concept of the 

Give-Cold metaphor. This step yields the concept Bec-Inf-w-cold, which basically 

represents the notion of becoming infected with a cold. 

Abstracting Bec-Inf-W-Cold to ancestor concept Become-Infected producing 

abstract target meaning: 

(A Become-Infected7 (i Become-Infected) 

(infected-of-bec7 (i infected-of-bee) 

(A John72 (i John))) 

(infection-of-bec7 (i infection-of-bee) 

(A Flu31 (i Flu)))) 

The concept Bec-Inf-W-Cold is now abstracted to the concept Become-Infected 

based upon the constraints imposed by the input concept Flu. In this case, the concept 

- 124-



Become-Infected is the most specific ancestor of Bec-Inf-W-Cold that can accommo­

date the given inputs. 

Concreting Become-Infected7 to concept Bec-Inf-W-Flu. 

Yielding concept 

(A Bec-Inf-W-Flull (i Bec-Inf-W-Flu) 

(bec-flu-victimll (i bee-flu-victim) 

(A John72 (i John))) 

(bec-infected-flull (i bee-infected-flu) 

(A Flu31 (i Flu)))) 

Finally, the concept Become-Infected7 is concreted to the more specific concept 

Bec-Inf-W-Flull. This is the most specific descendent of the Become-Inf concept that 

can accept the concept Flu in the infection-of-bee role. 

7.2.6. Step 5: Storing the New Metaphor 

This step produces a new metaphor representing a new use that can be used directly 

in future processing. Remember that the fundamental unit representing a coherent meta­

phor is the metaphor-sense. A metaphor-sense is a structured association consisting of a 

set of metaphor-maps that directly link the appropriate source and target concepts of the 

metaphor. The first task, therefore, is to create a new metaphor-sense with component 

metaphor-maps linking the various source and target concepts identified during the previ­

ous steps of the algorithm. The final step is to place these new metaphorical concepts at 

the correct level in the metaphor hierarchy. 

In the current example, the system has determined that the following correspon­

dences underlie this new metaphor: the main input concept Getting corresponds to 

Bec-Inf-W-Flu, the getter corresponds tO bee-flu-victim, and the gotten 

corresponds to bee-infected-flu. Three new metaphor-maps, getting-bec-inf-w­

flu-map, gotten-bee-infected-flu-map, and getter-bec-flu-~ictim-map are 

created to represent these metaphorical associations. The names of the maps (irrelevant 

to the functioning of the system) are created by concatenating the name of the source to 

the name of the target. These three maps are then attached to the newly created 

Getting-Bec-Inf-W-Flu metaphor-sense with component-map relations. 

Note that two subtly different kinds of maps were actually created in this example. 

In the simple case, the metaphor-map getting-bec-inf-w-flu-map directly associates 

the main input source concept Getting with the main target concept Bec-Inf-W-Flu. 

This kind of simple metaphor-map, linking an absolute to an absolute, is called an abso­

lute metaphor-map. The other maps, however, do not associate the target input filler con­

cepts John and Flu with the corresponding source concepts. Rather, the new maps link 

- 125-



the aspectual roles that input fillers play in the source domain with the corresponding 

roles in the target domain. This kind of map is called an aspectual map. This shift from 

the input concepts to the roles played by the inputs, represented as aspectuals, ensures 

that the metaphor-maps capture the correct metaphorical information presented in the 

example. It is the role of a person being infected with the flu and the role of a transmitted 

flu than that are being metaphorically structured, rather than the filler concepts John and 

Flu. The low-level KODIAK details of the newly created metaphor are shown in Figure 

4. 

Bec-lnf-W -Flu 

getting -bec-inf -w-fiu 

Figure 4: New Get Flu Metaphor 

The final phase of this step in the algorithm is to place these newly created maps in 

the appropriate place in the hierarchy. A simple concretion process places each of the 

new maps under the most specific existing metaphor-map that can dominate the source 

and target concepts of the new map. The concretion simply starts at the top level concept 

metaphor-map, which represents a generic metaphor-map, and searches downward 

through the existing metaphor maps to classify the new maps. In the case of a simple 

absolute map, this classification is simply based upon the map's immediate source and 

target concepts. In the case of an aspectual map, the classification is based not upon the 

source and target concepts of the metaphor-map (which are aspectuals) but upon the con­

strainers of these aspectual concepts. Note that by uniformly representing metaphor-maps 

as ordinary KODIAK concepts, it is possible to use the existing concretion mechanisms 

- 126-



to classify these new concepts. 

Mapping main source concept Getting to main target concept Bec-Inf-W-Flu. 

Mapping source role getter to target role bee-flu-victim. 

Mapping source role gotten to target role bee-infected-flu. 

(A Getting-Bec-Inf-W-Flu (i Metaphor-Schema) 

(gotten-bee-infected-flu-map gotten -t bee-infected-flu) 

(getter-bee-flu-victim-map getter -t bee-flu-victim) 

(getting-bec-inf-w-flu-map Getting -t Bec-Inf-W-Flu)) 

7 .3. Summary 

This chapter has presented the details of the learning component of MIDAS - the 

Metaphor Extension System. The MES accepts a representation of a new use for which 

no coherent conventional interpretation was possible. It then attempts to infer and 

remember an appropriate interpretation of this use by systematically extending an exist­

ing metaphor. This chapter has provided the details for how the system finds and selects 

an appropriate candidate metaphor, and also how the system stores the newly understood 

metaphor for future use. The exact details of the similarity-extension and core-extension 

inferences, which constitute Step 4 of the MES algorithm, will be given in the next two 

chapters. 

- 127-



Chapter 8 

Learning Metaphors by Using Similarity 

8.1. Introduction 

This chapter describes how a new metaphor can be understood by reference to a 

known conventional metaphor that has been judged to be similar to the new use. As 

described previously, understanding a new metaphor principally means determining the 

concept that plays the role of the target in this new metaphor. The similarity approach 

relies on the fact that this new target concept may be similar to a concept that is the target 

meaning of some already understood metaphor. It should be possible, therefore, to deter­

mine the meaning of the new metaphor by mapping from the meaning of an existing 

similar one. 

The strategy just described infers further similarities between concepts based on 

some limited set of known similarities. This general strategy has received a great deal of 

attention under the various headings of Analogical Reasoning (for recent surveys see Pri­

dietis 1987 and Helman 1988) and Case-Based Reasoning (Hammond 1986). The 

approach described in this chapter applies this general strategy to the specific task of 

understanding new metaphors. It asserts that there are certain domain specific similari­

ties in conventional metaphors that are strongly predictive of further similarities. Note 

that the approach described here is not directly related to that known as Similarity-Based 

Learning (Michalski 1983). Similarity-Based Learning is concerned with the induction of 

a general concept based on a series of positive and negative input examples. 

Consider the following examples. 

(1) John gave Mary a cold. 
(2) John gave Mary the flu. 

Consider the situation where an understander has knowledge of a highly specific 

metaphor underlying Example (1). No generalized metaphor has yet been formed for this 

- 128-



' \,. 

class of metaphor. Example (2) is then encountered. The hierarchical relationship 

between colds and flu can be exploited to understand this new use by assuming that the 

target meaning of the known use has a corresponding meaning with the new concept. In 

this example, since give means to infect when applied to colds, it will probably mean 

infect when applied to the flu, since colds and flu are known to be similar concepts. 

Exploiting the abstraction hierarchy is the key to using a similar metaphor to 

understand a new use. The basic strategy is to use the given input target concepts to 

guide a search through the hierarchy from the target of the known metaphor to the 

intended target of the new use. This search proceeds from the target concept of the 

known metaphor to a more abstract concept, and then down to the most specific concept 

that can accept the input concepts. This abstraction and specialization search is a result of 

an inference called a combined abstraction-concretion inference. This inference will be 

illustrated with an example in the next section, and defined fully in the algorithm section. 

The focus in this chapter is on the nature of the similarity relationship and how it 

can be exploited once an appropriate metaphor has been identified. This corresponds to 

Step 4, the application step, of theMES algorithm. 

8.2. An Exam pie 

This section will consider the details of the situation where a listener has knowledge 

of the highly specific Give-Cold metaphor, as described in Chapter 4, and reproduced 

here in Figure 3. In addition, the listener has knowledge of other infectious diseases like 

the flu. The listener, however, has never encountered the use of this metaphor with any 

disease other than the common-cold. The question is how can such a listener come to an 

understanding of (2) when it is encountered. In particular, how can the closeness of this 

new use to the Give-Cold metaphor, and the information available in the example, be 

used to identify the concept Infect-With-Flu as the intended target meaning? 

This step of the overall MES algorithm takes the primal input and a similarity 

related candidate metaphor and finds the intended target meaning. Figure 1 shows the 

primal representation of Example (2). MIDAS has not been able to find any conventional 

interpretation that can adequately accommodate this input. The MES has, in tum, 

accepted this input, and during the search and evaluation steps decided that the Give­

Cold metaphor is the most closely related candidate. Figure 2 shows the connections 

between the primal input concepts and this candidate metaphor. The Give-Cold meta­

phor itself is show in Figure 3. 

Figure 4 shows the hierarchical connection between the target concepts of the 

Give-Cold metaphor and the intended target concept of the flu example. In this 

diagram, the target meaning of (1) is shown as the Infect-With-Cold concept with the 

infection constrained to be a Common-Cold. The intended meaning of (2) is shown as 

the Infect-With-Flu concept with the infection specified as an instance of Flu. These 

concepts are in turn dominated by common parent categories. In particular, Infect-

- 129-



(A Givingl (j Giving) 

(giverl (j giver) (A Johnl <i John))) 

(giveel (j givee) (A Maryl <i Mary))) 

(given (j given) (A Flul <i Flu)))) 

Figure 1: Primal Representation 

Figure 2: Give-Cold Similarity Connection 

With-Cold and Infect-With-Flu are dominated by the Infect-With-Disease con­

cept. Correspondingly, the Flu and cormnon-Cold concepts are dominated by the com­

mon parent Infectious-Disease. Figure 5 shows the more complete relationships 

associated with the parent concepts Infect-With-Disease and Infectious-Disease. 

The key to using a known similar metaphor to understand a new use is being able to 

move through the hierarchy from the known target concept to the intended target con­

cept. This search is guided by the concepts that have been identified as the partial target 

concepts. Briefly, this search is a two step process that first proceeds from the target of 

the candidate metaphor to an appropriately abstract ancestor concept, and then down to 

the appropriate target via a concretion inference. 

The first step in processing this example is to pair up the input target concepts with 

their corresponding concepts in the candidate target concept. This is accomplished by 

pairing the fillers of the input source roles with the target concepts of the candidate meta­

phor. In this case, the filler of the giver role, Johnl, is paired up with the target con­

cept cold-infector, in accordance with the giver-infector metaphor-map of the 

Give-Cold metaphor. In a similar manner, the filler concepts of the source roles givee 

and given, Maryl and Flul, are paired up with the candidate target roles cold-

- 130-



Giving Give-Cold Infect-With-Cold 

give-infect -cold 

giver-infector 

givee-infected 

given-cold 

give-res-inf-res 

Figure 3: Give-Cold Metaphor 

infected and cold-infection. 

The next step in the processing is to use these pairings to guide the search for an 

appropriate abstraction of the target candidate metaphor. The search begins at the target 

concept of the known metaphor, Infect-With-Cold, and moves upward through the 

hierarchy to the more abstract concept Infect-With-Disease. This upward movement 

is guided by the pairings of the input concepts with candidate target roles. The search 

proceeds upward until a concept is found whose constraints are abstract enough to accept 

the given fillers. In this case, this abstract concept, Infect-With-Disease, is the 

immediate parent of the target concept Infect-With-Cold. As show~ in Figure 5, the 

constraints on the slots of this concept can all accept the given input filler concepts in the 

appropriate roles. In particular, Johnl and Maryl can fill the abstract aspectuals, 

infector and infected, since they are constrained by the concept Person. Similarly, 

the input filler, Flul, can fill the abstract role of infection, which is constrained to be 

an Infectious-Disease. 

The result of this initial abstraction step is the assumption that the intended target 

meaning is a kind of Infect-With-Disease, where Johnl plays the role of the infec­

tor, Maryl plays the role of the infected, and Flul plays the role of the infection. 

This abstract concept represents a plausible interpretation of the inputs since it can 

coherently account for all the input concepts. It may, however, not be the most specific 

- 131 -



Figure 4: Cold and Flu Infecting 

known concept that can account for the inputs. In particular, there may be a concept that 

represents specific knowledge about infecting someone with the flu. The next step is an 

attempt to find a concept more specific than this abstract concept. 

The next step is simply a concretion inference. The concept Infect-W-Disease, 

with the fillers assigned to the appropriate roles, is concreted to the most specific concept 

below it that can accept these input concepts. This concretion leads to the concept 

Infec:.-With-Flu, which has Infect-With-Disease as an immediate parent. This con­

cept is accepted because the constraint on its version of the infection -slot is more 

specific than the constraint on the parent concept, yet it can still accept the input filler 

concept Flul. 

Note that the prior existence of the specific Infect-W-Flu concept is not necessary 

to the success of this process. In the event that there is no known concept more specific 

than Infect-With-Disease, the system creates a new specific instance of Infect­

With-Disease with the concept Flu constrained to play the role of the infecting disease. 

This new instance plays the role of the target concept of the new metaphor. 

The process of mapping a closely related metaphor is, therefore, one of abstracting 

- 132-



Figure 5: Infecting 

the main target concept of the known metaphor to an abstract enough le.vel to accept the 

inputs, and then attempting to specialize* it down to the most specific concept that can 

accept the given input constraints. 

• Alterman (1988) employs a similar abstraction-specialization algorithm to perform the task of adapting a known plan to a 

new problem solving siwation. 

- 133-



8.3. Similarity Algorithm 

Now that we have seen a simple example of similarity extension inference, this 

section will present the exact details of the similarity extension algorithm. Once each of 

the steps has been described, a detailed trace example from the MES will be walked 

through. 

The algorithm described here corresponds to the application step (Step 4) of the 

overall MES in those cases where the candidate metaphor is similarity-related to the new 

metaphor. 

Step 0: Accept a candidate metaphor and primal representation. The MES has 

been passed a primal representation for which there is no adequate conventional explana­

tion. The MES, as a result of its first two steps, finds and selects a similarity related can­

didate metaphor. 

Step 1: Assign corresponding roles. In this step the target concepts in the primal 

representation are paired up with the corresponding concepts in the target concept of the 

candidate metaphor. This pairing is based upon the common roles that the target concepts 

play in the source domain. 

Step 2: Abstract the target concept. The target concept of the candidate metaphor 

is replaced by its most specific ancestor that can accommodate the given input concepts. 

Step 3: Concrete the abstract target. Once an abstract concept has been found it is 

then replaced by its most specific descendent that can accept the given input concepts. 

These steps will be made more concrete by considering the detailed processing of 

the following examples: 

(3) John killed the conversation when he arrived. 

( 4) How can I kill a process? 

Consider the situation where (4) is encountered for the first time and the system 

attempts to use the Kill-Conversation metaphor underlying (3) to understand the new 

use. This example illustrates a more distant kind of similarity than was seen in the previ­

ous one. In particular, the relationship between the target concepts, conversations and 

computer-processes, is much more distant. The abstraction step of the algorithm may be 

forced to ascend to an arbitrary height in the hierarchy before a concept is found that is 

abstract enough to accept the input concepts. The distance traveled reflects how close the 

candidate metaphor actually is to the current example. 

- 134-



' 

8.3.1. Step 0: Accept 

Consider the situation where example (4) has been encountered and the Kill­

Conversation metaphor has been selected as the best candidate metaphor. Figure 6 

shows the primal representation given to the MES. Based on this input, the MES has 

selected the known Kill-Conversation metaphor as the best candidate to work from. 

This metaphor is shown in Figure 7. 

(A Killingl ,r Killing) 

(killerl (j killer) (A Il (j I))) 

(kill-victiml (i kill-victim) 

(A Computer-Processl (j Computer-Process)))) 

Figure 6: Primal Representation 

kill-term 

kill-c-res 

killed-conv 

killer-terminator 

Figure 7: Killing a conversation 

The target meaning of (3), shown in Figure 8, consists of the concept Terminate­

conversation which is an action that has an effect that causes the terminated­

conversation to be in a Terminated-Conversation-State. The terminated­

conversation is in turn constrained to be a conversation. The dashed DOMINATE 

links are an abbreviation indicating that the dominating category shown is an eventual 

parent of the child, but does not directly dominate it. 

- 135-



c 

Figure 8: Terminating a conversation 

> (do-sentence) 

Interpreting sentence: 

How can I kill a process? 

Interpreting primal input. 

(A Killingl6 (i Killing) 

(agent87 (i agent) (A I46 (i I))) 

(patient76 (i patient) 

(A Computer-ProcesslO <i Computer-Process)))) 

Concreting input relations. 

Concreting patient to kill-victim. 

Concreting agent to killer. 

- 136-

Terminating 

I terminate-conversation/ 



,, 

Interpreting concreted input. 

(A Killingl6 (i Killing) 

(killerl6 (i killer) (A I46 (i I))) 

(kill-victim16 (i kill-victim) 

(A Computer-ProcesslO (i Computer-Process)))) 

Failed interpretation: Killingl6 as Killing. 

Failed interpretation: Killingl6 as Kill-Delete-Line. 

Failed interpretation: Killing16 as Kill-Sports-Defeat. 

Failed interpretation: Killingl6 as Kill-Conversation. 

No valid interpretations. Attempting to extend existing metaphor. 

Entering Metaphor Extension System 

========~=~====================-===========
================ 

Searching for related known metaphors. 

Metaphors found: Kill-Conversation Kill-Delete-Line Kill-Sports-Defeat 

Selecting metaphor Kill-Conversation to extend from. 

(A Kill-Conversation (i Kill-Metaphor Metaphor-Schema) 

(kill-c-res kill-result ~ conv-t-result) 

(killed-conv kill-victim ~ conv-termed) 

(killer-terminator killer ~ conv-termer) 

(kill-term Killing~ Terminate-Conversation)) 

8.3.2. Step 1: Assign Roles 

The first step pairs up the input target concepts with their corresponding concepts in 

the candidate target This is accomplished through the use of the source roles and the 

metaphor-maps in the candidate target metaphor. In this example, I46, which plays the 

role of the killer in the source, is paired up with the conv-termer role in the candi­

date target. The conv-termer concept is chosen because it is attached to a metaphor­

map in the candidate metaphor that has the concept killer as a source. Similarly, the 

concept Comp-ProcesslO, which plays the role of the kill-victim in the source, is 

- 137-



paired up with the conv-termed in the candidate target role. 

Attempting a similarity extension inference. 

Extending similar metaphor Kill-Conversation with target concept 

Terminate-Conversation. 

Assigning input concept I46 to candidate target role conv-termer. 

Assigning input concept Comp-ProcesslO to candidate target role 

conv-termed. 

8.3.3. Step 2: Abstraction 

The next step is to abstract the target concept of the candidate metaphor to an 

appropriately abstract concept. This abstract concept is the most specific ancestor of the 

candidate target that can accommodate the input concepts in the roles assigned to them in 

Step 1. This abstraction is actually accomplished by moving upwards through the ances­

tors of the target aspectuals themselves. The search stops at the lowest concept where all 

of the aspectuals can be accepted. 

In this example, each of the target aspectuals, conv-termer and conv-termed, 

are abstracted in turn. It is immediately found that since the concept conv-termer is 

constrained to be a Person, the input concept I46 can be accepted in that role. How­

ever, the concept computer-ProcesslO cannot fit the role of conv-termed since it is 

constrained to be a Conversation, and Computer-ProcesslO is not dominated by this 

concept Therefore, the abstraction process must move upward. It proceeds upward 

through the ancestors of conv-termed until the concept terminated is found. This con­

cept is constrained to be the abstract concept Process, which is an ancestor of 

Computer-ProcesslO. The concept terminated is an aspectual of the concept Ter­

minate, whic!l will now be considered as an abstraction of the intended target meaning. 

Figure 9 shows the hierarchical relationship between the target concepts, conver­

sation and Computer-Process. The common ancestor ultimately dominating these 

concepts is Process. This represents the abstract notion of a series of actions and events 

occurring over time. A conversation is a sequence of speech acts by two or more par­

ties occurring over some time period, serving a particular social function. A 

computer-Process consists of a series of directed computer operations over some time 

period. 

The termination actions underlying the target meanings of these examples have a 

corresponding hierarchical relationship. The exact details of how a conversation is halted 

and how a process is halted are very different concepts. They do, however, share a com­

mon core notion of bringing an ongoing sequence of events to a halt. 

- 138-



The final step of this abstraction process is the instantiation of a new instance of 

the Terminating concept with the input concepts I46 and Computer-ProcesslO 

assigned to the abstract roles of terminator and terminated, respectively. 

D 

computer· process 

Figure 9: Process Conversation Connection 

Abstracting Terminate-Conversation to ancestor conceptTerminating 

producingabstract target meaning: 

(A Terminating3 <i Terminating) 

(terminated3 (i terminated) 

(A Computer-ProcesslO (i Computer-Process))) 

(terminator3 (i terminator) (A 146 (i I)))) 

The result of the abstraction step is extremely sensitive to the closeness of the candi­

date metaphor to the input examples. In Example (5), discussed above, the abstract 

category found was the immediate parent of both the candidate target concept and the 

intended target meaning. In the current example, the abstract concept Terminate is a 

further distance away in the hierarchy than just the immediate parent of the given target 

concept Section 8.4, below, will discuss the general issue of degree of similarity and 

situations where the concept found in this step is too abstract to be easily usable. 

- 139-



8.3.4. Step 3: Concretion 

The final step is to concrete the abstract concept, found in Step 2, down to its most 

specific descendent that can accept the given input concepts in more specific roles. As in 

the case of the abstraction step, the concretion is entirely based upon finding concepts 

whose aspectuals can accept the input concepts. The search, therefore, proceeds down­

ward through the descendents of the abstract aspectuals terminated and terminator. 

This concretion inference yields the concept Terminate-computer-Process. This is 

the most specific descendent of the concept Terminating that can accept the input con­

cepts. In particular, it can accept the concept I46 in the role of the c-proc-termer, 

which is a kind of terminator, and Computer-ProcesslO in the role of the c-proc­

termed, a kind of terminated that is COnstrained tO be a Computer-Process. 

Concreting target concept Terminating to Terminate-Computer-Process 

producing concreted meaning: 

(A Terminate-Computer-ProcesslO 

(i Terminate-Computer-Process) 

(c-proc-termerlO (i c-proc-termer) 

(A I46 (i I))) 

(c-proc-termedlO (i c-proc-termed) 

(A Computer-ProcesslO (i Computer-Process)))) 

Creating new metaphor: 

Mapping main source concept Killing to main target concept 

Terminate-Computer-Process. 

Mapping source role killer to target role c-proc-termer. 

Mapping source role kill-victim to target role c-proc-termed. 

(A Killing-Terminate-Computer-Process (i Kill-Metaphor) 

(kill-victim-c-proc-termed-map kill-victim ~ c-proc-termed) 

(killer-c-proc-termer-map killer ~ c-proc-termer) 

(killing-terminate-computer-process-map 

Killing~ Terminate-Computer-Process)) 

Final interpretation of input: 

(A How-Q46 <i How-Q) 

(topic46 (i topic) 

(A Terminate-Computer-ProcesslO 

(i Terminate-Computer-Process) 

(c-proc-termerlO (i c-proc-termer) 

(A I46 (i I))) 

(c-proc-termedlO (i c-proc-termed) 

(A Computer-ProcesslO 

- 140-



(i Computer-Process)))))) 

Calling UC. 

You can kill a computer process by typing ~c to the shell. 

Figure 10 shows the meamng underlying (4). The main concept is the 

Terminate-Computer-Process action. This is an action that causes a running process, 

the terminated-computer-process, to be in a Terminated-Computer-Process­

State. 

. ---------------..... 12-----................. -----------... ----........ .. 

Figure 10: Terminating a computer-process 

Terminating 

of 

Terminate 
Computer-Process 

In general, the difficulty of the concretion step is completely dependent upon the 

kind of abstraction found in Step 2. In particular, the higher the level of abstraction of the 

concept found in Step 2, the more difficult the concretion becomes. As mentioned above, 

this is a function of how close the candidate metaphor is to the current example. In the 

current example, there is a unique concept beneath Terminating that has the concept 

Computer-Process in the role of terminated the concretion is, therefore, relatively 

- 141 -



easy. 

The combined abstraction-concretion strategy described here is a form of analogi­

cal reasoning. The known metaphor provides a salient analog in its target concept. This 

analog, along with the partial target concepts provided in the primal representation, are 

used to find a concept analogous to the target of the known metaphor that is consistent 

with the given input concepts. The success of this strategy is completely dependent upon 

how good the specified analog concept is. 

8.4. Degrees of Similarity 

It is obvious from the previous example that the success of the similarity approach 

depends critically upon the relationship between the candidate metaphor and the new 

example. It is important to understand the exact role that similarity and abstraction play 

in this process. As shown in the Kill example, the target concepts in the candidate meta­

phor may be quite distant from the new example and still yield useful results. The criti­

cal factor is not the degree of similarity between the target concepts of the new and can­

didate metaphor. Instead, the critical factor is whether or not there exists a common 

abstraction between these concepts that is meaningful with respect to the new metaphor. 

Consider the following examples. 

( 6) Mary gave John an idea. 
(7) Mary gave John a cold. 

These examples are in an even more distant relationship than the previous example 

involving kill. The similarity in these examples is more a result of the constraints on the 

metaphors, rather than of the semantics of the target concepts themselves. This is illus­

trated by the fact that, unlike the previous examples, the common abstraction between the 

target concepts in these examples is highly abstract. Figure 11 shows the details of the 

target concepts underlying (6). Figure 12 shows the distant hierarchical relationship 

between the target concepts, Infect-With-Cold, introduced earlier, and the target con­

cept underlying (6), Induce-Idea. 

The common ancestor of these concepts is the abstract notion of causing someone to 

be in a new state with respect to some previously unrelated concept. This concept is 

shown as the concept cause-New-State in Figure 12. The concept Infect-With-Cold 

is, therefore, a kind of Cause-New-state where the victim of the infection enters a new 

physical state with respect to a cold infection. Similarly, Induce-Idea is an action that 

results in the effected person being in a new mental state with respect to a particular idea. 

The concept cause-New-State is, therefore, an abstract concept that dominates more 

specific concepts that may have physical, mental, or emotional effects on the effectea 

person. Specific information about the nature of the actions and effects lies almost com­

pletely in these more specific concepts. 

The difference between this kind of distant hierarchical relationship and that found 

- 142-



Person 

c 
Induce-Idea 

s 

Figure 11: Induce an idea in a person 

in the Kill example is one of degree. Contrast the concept Cause-New-State with the 

common abstract concept Terminate in the Kill examples. The Terminate concept, 

while an abstraction over Terminate-Conversation and Terminate-Computer­

Process, still preserves the essential meaningful content of the two target concepts. 

While Cause-New-State does dominate Infect-With-Cold and Induce-Idea the 

essential content of these concepts lies in the concepts below the abstraction. 

The relevance of this distinction becomes apparent when learning is considered. 

Consider the situation where an understander must determine the meaning of (7) by map­

ping from the metaphor underlying (6). In particular, consider the concretion step 

whereby the abstract common ancestor, cause-New-state, is replaced by the most 

specific child that satisfies the constraints imposed by the input. In the Kill example, it 

WaS easy tO uniquely concrete from Terminate tO Terminate-Computer-Process 

- 143 -



D 
D 

infect-with-disease 

D 

infect-with-cold 

Figure 12: Cause-New-State Hierarchy 

given the knowledge that the object being terminated was a Computer-Precess. 

The key to understanding why the concretion inference is possible in t?is example 

lies in the relationship between the common abstraction and the metaphor itself. It is not 

necessary for the abstraction to preserve detailed structure of the target concepts, as long 

as it preserves the structure that is the essence of the metaphor. Therefore, while the con­

cept cause-New-State loses most of the details of the individual target concepts, it does 

preserve enough of the structure referred to by the metaphor to allow a successful concre­

tion to the correct specific target concept Infect-With-Cold. This is because the 

abstract concept cause-New-Sta:.e constrains the target to be an action that causes a 

person to enter a new state with respect to a cold. The only concept below cause-New­

State that preserves this structure is the concept Infect-With-Cold. 

The key to the success of the approach is not in the overall degree of similarity that 

- 144-



is preserved in the common abstraction. Instead, the important point is whether the com­

mon abstraction captures the essence of the metaphor. In these giving examples, it can 

be seen that the giving metaphors refer to a particular kind of causal concept that has to 

do with the creation of new states in an effected person. The distant relationship between 

the target concepts of give a cold and give an idea is sufficient to find this key concept. 

8.5. Summary 

This chapter has shown how the knowledge available in well understood similar 

metaphors can be used to understand new uses as they are encountered. A search tech­

nique has been introduced that exploits the abstraction hierarchy to find the intended tar­

get meaning of a new metaphor when given a similar known metaphor. 

- 145-



Chapter 9 

Learning Extended Metaphors 

9.1. Introduction 

This chapter describes how a new metaphor can be understood by reference to a 

known conventional metaphor that is core-related to the new use. The Metaphor Preser­

vation Principle, presented in Chapter 3, provides the basis for the strategy described in 

this chapter. The fundamental assertion of this chapter is that knowledge of the structure 

preservation predicted by the MPP allows extended metaphors to be incrementally 

acquired as new example metaphors are encountered. 

Consider the metaphoric uses of the words give, have, and get in the following 

examples. 

(1) Mary has a cold. 
(2) John gave Mary a cold. 
(3) Mary got her cold from John. 

Consider the situation where a listener has specific knowledge of the metaphor 

underlying the use of have in (1). Specifically, it is known that there is a metaphorical 

use of have that has the concept Infected-State as the target meaning. Example (2) is 

then encountered. The task is to use the existing metaphorical use of have to search for 

the intended meaning of give in the target domain. This kind of learning is accomplished 

by a Core-Extension inference. 

According to the Metaphor Preservation Principle, the concept filling the role of 

intended meaning must be one that is related to the known target, Infected-State, in 

such a way as to preserve the core-relation between Giving and Having. The key to 

learning the meaning of a new example is to use the core-relationship from the source 

domain to search for a concept in the target domain that will be related to the target of 

the existing metaphor in such a way as to preserve the source core-relationships. In the 

- 146-



case of Example (2), the desired concept must be one that is related to the concept 

Infected in the same way that a Giving results in a Having. The concept Infect­

With-Disease, which represents an action that causes a person to infect someone else 

with a disease, is chosen as the appropriate target. This choice is based on the preserva­

tion of the Result relation between Having and Giving in the relationship between 

Infected and Infect-With-Disease. 

A core-extension inference is fundamentally a form of analogical reasoning. The 

existing core-related metaphor and the structure of the source and target domains form 

the basis for the analogy. Consider the following analogical formulation of the current 

example. 

Having:Giving::lnfected: ? 

This formulation represents the situation that the MES finds itself in when it is 

presented with Example (2), and the Have-Infection is the candidate metaphor. The 

core-relationship in the source domain is the basis for the relationship between Having 

and Giving on the left side of the analogy. The pairing of Having and Infected in the 

analogy is a result of the source target structure of the known Have-Infection meta­

phor. The Metaphor Preservation Principle predicts that the intended target meaning of 

the new example will preserve the relation between Having and Giving, and thus com­

plete the above analogy. 

9.2. Core Extension Algorithm 

The previous chapter discussed the details of the application step of the overall 

MES algorithm as it applied to similarity-related candidates. The rest of this chapter will 

discuss the application step in the case of core-related candidate metaphors. As in the 

previous chapter, the assumption is that theMES has been passed a primal representation 

for which there is no known coherent interpretation. In addition, the search and evalua­

tion steps have chosen a known metaphor that is core-related to this new example. The 

rest of this chapter will show the details of how a core-related candidate metaphor can be 

used to determine the meaning of a new example. 

The application of a core-related metaphor to a new example may be seen as a three 

step process. In preliminary processing, MES accepts a primal representation and finds a 

core-related candidate metaphor. In the next step, the exact nature of the core­

relationship is determined. The details of this relationship form the basis for the remain­

ing steps. The existing source core-relationship is applied to the target domain in an 

attempt to find an appropriate target concept. In the final step, the concept that results 

from the application of the core-relationship is concreted to the most specific known con­

cept that can accept the input concepts. 

Step 0: Accept a candidate metaphor and primal representation. The MES has 

been passed a primal representation for which there is no adequate conventional 

- 147-



explanation. The MES, as a result of its first two steps, finds and selects a core-related 

candidate metaphor. 

Step 1: Characterize the source core-relationship. This step determines the nature 

of the core-relationship between the input concepts and the candidate metaphor. 

Step 2: Apply the source core-relationship to the target concepts. Using the input 

filler concepts and the source core-relation, choose the target concept that best preserves 

the source core-relationships in the target domain. 

Step 3: Concrete the intended target concept found in Step 2 to the most specific 

concept that can accommodate the input concepts. 

The following sections will give brief overviews of these steps. Detailed examples 

will be presented to illustrate the exact nature of the learning inferences for each of three 

possible core-relationships. 

Step 1: Characterize. The core-relationship from the source domain consists of 

two parts. The first consists of the relation or relations that satisfy the Relation Condi­
tion. This relation will be referred to as the source core-relation. The source core­

relation forms the basis of the hierarchical search in the target domain. 

The second component consists of the containing relations between the input source 

and the core-related source concept. These containing relations consist of the equate 
links that indicate which input concepts play which roles in the core-related concept. 
The containing relations serve two purposes in the overall application of the target meta­

phor. The first purpose is as a check on the correctness of the concepts chosen as possible 

intended target meanings. The second use is to assign the input roles from the primal 
input to the appropriate roles in the core-related concepts. 

Three kinds of relationships arise as a result of the core-relatedness conditions 
given above. Two of these arise from the asymmetry of the Containing Condition. In par­

ticular, the source input concept may contain or be contained by the source concept of 

the candidate metaphor. The third relationship arises from the Shared Intermediate Con­
dition. These three relationships, in turn, give rise to three variations on the ·next step of 

the algorithm. 

Step 2: Application. Application is the process by which the candidate metaphor is 

used to identify the intended target meaning of the new example. The core-relationship 

between the source concepts of the candidate metaphor and the source concepts underly­

ing the new example is the key to the search in the target domain. The assumption is that 

the intended target concept will be the concept related to the target concept of the candi­

date metaphor that best preserves the core-relationships from the source domain. 

The intended target concept is found by hierarchically matching the source relation 

- 148-



I\. 

I 

against relations that are attached to the target concept of the candidate metaphor. A 

hierarchical match is a match that attempts to find a common ancestor between the two 

objects of the match. If they have a common ancestor it is returned; otherwise the match 

fails. The relation in the target domain that best matches the source core-relation will be 

attached to the intended target concept. The match that is considered best is the one that 

yields the most specific common ancestor. 

Consider the situation where (2) is being understood by reference to the Infected­

State-As-Possession metaphor underlying (1). The source core-relationship, in this case, 

is the Giving-Result relation, which indicates that a Having results from a Giving. 

The target concept of the known metaphor, Infected-State, has a number of relations 

attached to it. Of these relations, the relation Infect-Result best matches this source 

relation. These relations share the common ancestor relation, Result, which holds 

between causal actions and the states that result from them. The Infect-Result relation 

is, therefore, returned as the result of the matching step. The concept Infect-With­

Disease which is linked to the known target concept Infected-State, by this relation, 

is chosen as the intended target concept. 

The final step in the application phase is to use the containing structure as a check 

on the correctness of the target concept identified by relation matching. The concept 

found must satisfy the Containing conditions in the source. In other words, after it is 

shown that it hierarchically preserves the source core-relation, it then has to be shown 

that it has the appropriate containing structure. 

The steps just outlined vary slightly based on the kind of core connection found in 

the source domain. In particular, three possible kinds of learning behavior arise from the 

three conditions for core-relatedness given in Chapter 3. These three possibilities affect 

how each of the above four steps is actually realized in an algorithm. The three kinds of 

learning behavior are called Direct Extension, Realization, and Intermediate Extension. 

These learning inferences are based on how the given new example is core-related to the 

candidate metaphor. Figure 1 summarizes the three basic kinds of core-extension infer­

ence. The details of each will be illustrated with examples in the following sections. 

The first two inferences, Direct Extension and Realization, arise from the asym­

metry of the Containing Condition for core-relatedness. This condition requires, in 

essence, that one of the concepts be completely contained by the other. In KODIAK 

terms, all the slots of one of the concepts must be equated to slots in the other concept. 

The concepts Giving and Having satisfy the Containing condition since the concept of 

Giving contains Having as a component. The two learning inferences arise based on 

whether the contained concept is the new example or the known metaphorical candidate. 

If the contained, or core concept, is the known metaphor, and the containing concept is 

the new example, then this is a Direct Extension inference. This is the case if the 

Have-Infection metaphor is understood and the new example involves the use of give. 

The having metaphor must be extended to cover the use of give. The new sense will 

necessarily involve concepts that are not contained within the existing metaphor and 

must be inferred from the target domain. 

- 149-



Direct Extension: 

Extending a metaphor from a contained concept to a containing concept. 

Example: 

Extending Having a cold to Giving a cold. 

Realization: 

Extending a metaphor from a containing concept to a contained concept. 

Example: 

Extending Giving a cold to Having a cold. 

Intermediate Extension: 

Extending a metaphor from a concept to a core-related concept that shares an inter­

mediate contained concept. 

Example: 

Extending Giving a cold to Getting a cold by going through Having. 

Figure 1: Core-Extension Inferences 

If the situation is reversed, and the known metaphor contains the definition of the 

new example, then this is a Realization inference. This would be the case when the 

known metaphor is the Give-Infection metaphor, and the new example involves the 

use of have. The term Realization is used because the new metaphor is in a sense already 

implicitly represented as a part of the containing concept. It is not so much necessary to 

extend the metaphor to new concepts as it is to explicitly move it to the appropriate 

place. 

The final inference type is Intermediate Extension. This is the case when the 

known metaphor is core-related to the new use because they satisfy the Shared Inter­

mediate Condition. Consider the case where the new example involves the use of get, 

and the known core-related metaphor is based on give. Giving and Getting are core­

related by virtue of the fact that they share the concept Having. An Intermediate Exten­

sion inference must use the intermediate concept as the basis for inferring the new mean­

ing. In practice, it will be shown that an intermediate extension inference consists first of 

a realization from the known metaphor to the shared core, followed by an extension from 

the core to the new use. 

Step 3: Concrete the result of the previous step. It is possible that the core-related 

candidate metaphor exists at a higher level of abstraction than the input example. In this 

case, it may be necessary to concrete the concept found in the application step to a more 

- 150-



specific concept. Like the concretion step in a Similarity Extension inference, this con­

cretion is guided by the input filler concepts. 

In the following sections, examples illustrating each of the three kinds of extension 

inference will be examined in detail. The assumption made in the following examples is 

that the first three steps of the MES algorithm have been completed. Therefore, a poten­

tially useful core-related metaphor has already been identified. As was the case with the 

similarity learning described in Chapter 8, the emphasis will be on the knowledge that is 

available in a relevant candidate metaphor and how it can be utilized. 

9.2.1. Direct Extension 

Consider once again the following examples. 

( 4) Mary has a cold. 
(5) John gave Mary a cold. 

Again consider the situation where the metaphor underlying (4) is well understood, 

but an example like (5) using give has never been encountered. This section will 

describe the details of the Direct Extension inference that allows (5) to be understood 

through the use of the Have-Infection metaphor underlying (4). This involves a Direct 

Extension inference since Having and Giving are directly connected, and the concept 

involved in the existing metaphor, Having, is contained by the new example, Giving. 

9.2.1.1. Step 0: Accept 

Given (5) as an input example, the concept Giving is determined to be the source 

concept with Cold as a participant in the target concept. The search and evaluation 

phases have produced the Have-Infection metaphor as the best core-related candidate 

metaphor to work from. This metaphor specifies that the concept Having can metaphor­

ically refer to the concept Infected, which represents the idea of a person being 

infected with some disease. 

> (do-sentence) 

Interpreting sentence: 

John gave Mary a cold. 

Interpreting primal input. 

(A Giving34 (i Giving) 

(agent46 (i agent) (A John44 (i John))) 

- 151 -



(patient46 (i patient) (A Mary34 (i Mary))) 

(object34 (i object) (A Cold20 (i Cold)))) 

Concreting input relations. 

Concreting object to given. 

Concreting patient to givee. 

Concreting agent to giver. 

Interpreting concreted input. 

(A Giving34 (i Giving) 

(giver34 (i giver) (A John44 (i John))) 

(givee34 (i givee) (A Mary34 (i Mary))) 

(given34 (i given) (A Cold20 (i Cold)))) 

Failed interpretation: Giving34 as Giving. 

No valid interpretations. Attempting to extend existing metaphor. 

Entering Metaphor Extension System 

=~============~============================
================ 

Searching for related known metaphors. 

Metaphors found: Have-Infection Have-Idea Have-Permission Ge~-Grade 

Selecting metaphor Have-Infection to extend from. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Have-Infection 

with target concept Cold-Inf-State. 

9.2.1.2. Step 1: Characterization 

This step determines the exact nature of the core-relationship between the candidate 

metaphor and the input example. In this example, the source concept of the candidate 

metaphor, Having, is related to the input concept, Giving, via the giving-result slot. 

Moreover, Having is completely contained by Giving, since all of its slots are equated 

to slots of Giving. This situation is indicative of a Direct Extension inference. It is 

necessary to extend the Have-Infection metaphor to cover the new use. Figure 2 

shows the details of the core-relations between the source concepts Giving and Having, 

in addition to the Have-Infection metaphor connection to the target concepts. 

- 152-



The equate links that form the basis for the Containing Condition also provide 

bindings from the input filler concepts to the core-related concept through to the target of 

the candidate metaphor. In this example, the fillers of the givee and given roles, 

Mary34 and Cold20, are bound through the containing relations to the core-related 

haver and had roles, and also to the infected-person and infection-of-infected 

target roles. These bindings will be carried through to the next step in order to assign the 

input fillers to the appropriate roles in the final target meaning. 

Had-Infection 

Haver-Infected 

c 
c 

Figure 2: Giving and Having a Disease 

- 153-



9.2.1.3. Step 2: Application 

The next step in the algorithm is the application step. This step hierarchically 

matches the source core-relation against relations attached to the target concept of the 

candidate metaphor. In this case, the relation underlying the giving-result slot is 

matched against the relations attached to the candidate target concept Infected-State. 

This is an attempt to find a concept related to Infected in a way that best preserves the 

core-relationship between Giving and Having. 

Figure 3 shows some of the details of the candidate target concept, Infected. This 

figure shows this concept engaging in five relations. Two of the relations underlie the 

infection-of-infected and infected-person slots of the Infected-State concept. 

The other three relations represent connections between this concept and two other con­

cepts that result in an Infected-State. The concept Infect-With-Disease 

represents the concept of an infected person causing another person to become infected. 

This concept is linked to infected via the infect-result slot. The other concept, 

Become-Infected, represents the event of a person coming down with a disease without 

specifying any cause. 

When the giving-result slot is hierarchically matched against all the relations 

attached to Infected there are two successful matches. Remember that a successful 

match is one that yields a common ancestor. In this case, the infect-result and 

become-infect-result slots both have successful matches since they have the concept 

result as ancestors. This indicates that there are two known concepts that result in an 

Infected State. 

The relation infect-result is chosen as the best match. The result of a success­

ful match is the common ancestor found between the two concepts. In the case of multi­

ple successful matches, the match that results in the most specific common ancestor is the 

one that is chosen. In this case, infect-result matches giving-result at the concept 

action-result, representing a state that results from a concept that is categorized as an 

action. The concept become-infect-result matches giving-result at the concept 

result that represents something that is the result of an event. This is a more abstract 

match and hence the infect-result is chosen. 

Finding a concept that is in a core-relation to the candidate target that best preserves 

the relation from the source domain is only the first check on the possible target meaning. 

The intended meaning must also satisfy the structural constraints imposed by the Con­

taining condition. In other words, the concept Infect-With-Disease must contain the 

concept Infected in the same way that the concept Giving contains the concept of 

Having. In cases where the constraints posed by core-relations alone cannot eliminate all 

the possible choices then the Containing conditions can further narrow the field. In this 

example, they merely serve as a further check on the single concept identified by the 

core-relations. 

The Containing conditions are checked by making sure that the concept identified as 

the likely target meaning has slots that are equated to slots in the candidate target 

- 154-



s 

c 

Figure 3: Infection 

- 155-



meaning in ways that reflect corresponding concepts in the source. In this example, the 

concept Infect-With-Disease should have one slot that is equated to the concept 

infection-of-infected. This reflects the equate relationship between the concepts 

had and given in the source. As shown in Figure 3, the infection slot satisfies this 

constraint. Finally, Infect-With-Disease must have another slot that is equated to the 

infected-person concept. This reflects the equate on the givee in the source. This is 

taken care of by the infected slot. The concept Infect-With-Disease, therefore, 

preserves all the appropriate core-relationships from the source domain. 

This is a direct extension inference. 

Applying source path: 

Giving -+ give-result -+ Having 

to target concept Infected yields target connection. 

Infected -+ infect-result* -+ Infect-With-Disease 

Applying source path yields target concept Infect-With-Disease 

(A Infect-With-DiseaseS (i Infect-With-Disease) 

(infectorll (i infector) (A John44 (i John))) 

(infectedl3 (i infected) (A Mary34 (i Mary))) 

(infectionl3 (i infection) (A Cold20 (i Cold)))) 

9.2.1.4. Step 3: Concretion 

The concept resulting from the application step may not be the most specific 

known concept that can accommodate the input concepts. Therefore, the concept result­

ing from the previous step is subject to a concretion inference in the same manner as in 

the Similarity Extension inference. 

In this example, the general concept of infecting someone with a disease is replaced 

with the concept cold-Infect. This represents the more specific concept of infecting 

someone with the common cold. This concretion is based upon the input filler concept 

Cold20 in the role of infection. This more specific role more tightly accommodates 

the input concept cold2 o. Since all the other roles are still valid in this concept, it is 

chosen as a more specific version of the intended target meaning. 

Concretion yields: 

(A Cold-InfectS (i Cold-Infect) 

(cold-infectorll (i cold-infector) 

- 156-

(A John44 (i John))) 



(cold-victim13 (i cold-victim) 

(infected-cold13 (i infected-cold) 

(A Mary34 (i Mary))) 

(A Cold20 (i Cold)))) 

Mapping main source concept Giving to main target concept 

Mapping source role giver to target role cold-infector. 

Mapping source role givee to target role cold-victim. 

Mapping source role given to target role infected-cold. 

(A Giving-Cold-Infect (i Metaphor-Schema) 

(given-infected-cold-map given ~ infected-cold) 

(givee-cold-victim-map givee ~ cold-victim) 

(giver-cold-infector-map giver ~ cold-infector) 

(giving-cold-infect-map Giving~ Cold-Infect)) 

Final interpretation of input: 

Cold-Infect. 

(A Cold-InfectS (i Cold-Infect) 

(cold-infectorll (i cold-infector) 

(cold-victim13 (i cold-victim) 

(infected-cold13 (i infected-cold) 

(A John44 (i John))) 

(A Mary34 (i Mary))) 

(A Cold20 (i Cold)))) 

9.2.2. Realization 

Now consider the opposite situation to the previous example. Assume that the 

metaphor underlying the use of give in (5) is well-understood, while the use of have is 

new. In this case, the core-relationship from the source domain is one where the new use 

is wholly contained within the definition of a known metaphor. In this case, the definition 

of have is wholly contained in the definition of give. This type of inference is called 

Realization because, in a sense, the metaphor is already represented as a pan of the 

known metaphor. A search in the target domain for the meaning of the new use is not 

required. Rather, what is needed is the explicit creation of a new metaphor sense at the 

level of the concept Having. 

The application step for a Direct Extension inference required a search among the 

relations attached to the candidate target metaphor for one that hierarchically preserved 

the core-relation from the source. No such search is required for a Realization inference. 

This is because all of the concepts that will eventually take pan in the new metaphor­

sense already have a metaphorical correspondence implied by the known metaphor. This 

was not the case with the direct extension inference because the concept Giving did not 

- 157-



already have a role in the known metaphor and hence had to be found. 

> (do-sentence) 

Interpreting sentence: 

John has a cold. 

Interpreting primal input. 

(A RavingS <i Having) 

(agent47 <i agent) (A John4S <i John))) 

(patient47 (i patient) (A Cold21 <i Cold)))) 

Concreting input relations. 

Concreting patient to had. 

Concreting agent to haver. 

Interpreting concreted input. 

(A RavingS (i Having) 

(haverS (i haver) (A John4S (i John))) 

(hadS (i had) (A Cold21 <i Cold)))) 

Failed interpretation: RavingS as Having. 

Failed interpretation: RavingS as Have-Idea. 

Failed interpretation: RavingS as Rave-Pe=mission. 

No valid interpretations. Attempting to extend existing metaphor. 

=========================================================== 
Entering Metaphor Extension System 

=======~===~~~============================================= 

Searching for related known metaphors. 

Metaphors found: Give-Infection Have-Idea Have-Permission Get-Grade 

Selecting metaphor Give-Infection to extend from. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Give-Infection 

with target concept Infect-With-Disease. 

- 158-



This is a realization inference. 

Applying source path: 

Having ~ give-result* ~ Giving 

to target concept Infect-With-Disease yields target connection. 

Infect-With-Disease ~ infect-result ~ Infected 

Applying source path yields target concept Infected. 

(A Infected2 (i Infected) 

(infected-person2 (i infected-person) (A John45 (i John))) 

(infection-of-infected2 {i infection-of-infected) 

(A Cold21 (i Cold)))) 

Concretion yields: 

{A Cold-Inf-State2 (i Cold-Inf-State) 

(cold-inf-person2 (i cold-inf-person) {A John45 (i John))) 

{cold-inf-of2 (i cold-inf-of) {A Cold21 (i Cold)))) 

Mapping main source concept Having to main target concept Cold-Inf-State. 

Mapping source role haver to target role cold-i~f-person. 

Mapping source role had to target role cold-inf-of. 

(A Having-Cold-Inf-State {i Metaphor-Schema) 

{had-cold-inf-of-map had ~ cold-inf-of) 

(haver-cold-inf-person-map haver ~ cold-inf-person) 

{having-cold-inf-state-map Having~ Cold-Inf-State)) 

Final interpretation of input: 

{A Cold-Inf-State2 {i Cold-Inf-State) 

{cold-inf-person2 {i cold-inf-person) (A John45 (i John))) 

(cold-inf-of2 (i cold-inf-of) (A Cold21 <i Cold)))) 

In the current example, the core-relationship between Having and Giving specifies 

that the giving-result slot is constrained to be a Having. The Give-Infection 

metaphor specifies that the concept infect-result corresponds to the source concept 

gi ving-resu:t. It follows, therefore, that the intended target meaning must be the con­

cept that constrains the infect-result slot. A similar analysis follows for the 

- 159-



assignment of the haver and had slots to the infected-person and infection-of­

infected slots respectively. 

9.2.3. Intermediate Extension 

The final kind of learning inference arises from a core-relation based on the Shared 

Intermediate Condition. Again consider the situation where the Give-Infection meta­

phor is well-understood. A metaphorical use of get is then encountered as in (3). As 

described Chapter 3, the concept Having is shared by these two concepts, hence they are 

core-related. Assume again that the Have-Infection metaphor does not yet exist. 

An intermediate extension inference is simply a combination of a Realization 

inference with a Direct Extension inference. The original metaphor is first extended via a 

Realization inference to the shared intermediate concept. The metaphor is then extended 

from the intermediate concept to the original example via a Direct Extension inference. 

In this example, the candidate metaphor is extended to the input concept Getting 

through the shared intermediate Having. 

> (do-sentence) 

Interpreting sentence: 

John got a cold. 

Interpreting primal input. 

(A Getting7 (i Getting) 

(agent48 (i agent) (A John46 (i John))) 

(patient48 (i patient) (A Cold22 (i Cold)))) 

Concreting input relations. 

Concreting patient to gotten. 

Concreting agent to getter. 

Interpreting concreted input. 

(A Getting7 (i Getting) 

(getter7 (i getter) (A John46 (i John))) 

(gotten7 (i gotten) (A Cold22 (i Cold)))) 

Failed interpretation: Getting7 as Getting. 

Failed interpretation: Getting7 as Get-Grade. 

- 160-



No valid interpretations. Attempting to extend existing metaphor. 

========~=-~~================================
============== 

Entering Metaphor Extension System 

=========================================================== 

Searching for related known metaphors. 

Metaphors found: Give-Infection Have-Idea Have-Permission Get-Grade 

Selecting metaphor Give-Infection to extend from. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Give-Infection 

with target concept Infect-With-Disease. 

This is an intermediate extension inference. 

Applying sourc~ path: 

Getting -+ get-result -+ Having -+ give-result* -+ Giving 

to target concept Cold-Infect yields target connection. 

Infect-With-Disease -+ infect-result -+ Infected -+bee-infected-res* 

-+ Bee-Infected-With-Disease 

Applying source path yields target concept Bee-Infected-With-Disease. 

(A Bee-Infected-With-DiseaseS (i Bee-Infected-With-Disease) 

(bec-inf-victimS (i bec-inf-victim) (A John46 (i John))) 

(bec-infected-infS (i bec-infected-inf) (A Cold22 (i Cold)))) 

Concretion yields: 

(A Bec-Inf-W-ColdS (i Bec-Inf-W-Cold) 

(bee-cold-victimS (i bee-cold-victim) (A John46 (i John))) 

(bee-infected-coldS (i bee-infected-cold) (A Cold22 (i Cold)))) 

Mapping main source concept Getting to main target concept Bec-Inf-W-Cold. 

Mapping source role getter to target role bee-cold-victim. 

Mapping source role gotten to target role bee-infected-cold. 

(A Getting-Bec-Inf-W-Cold (i Metaphor-Schema) 

- 161 -



(gotten-bee-infected-cold-map gotten ~ bee-infected-cold) 

(getter-bee-cold-victim-map getter ~ bee-cold-victim) 

(getting-bec-inf-w-cold-map Getting ~ Bec-Inf-W-Cold)) 

Final interpretation of input: 

(A Bec-Inf-W-ColdS (i Bec-Inf-W-Cold) 

(bee-cold-victimS (i bee-cold-victim) (A John46 (i John))) 

(bee-infected-coldS (i bee-infected-cold) (A Cold22 (i Cold)))) 

In the current example, a Realization inference is performed from the concept 

Giving to the shared intermediate concept, Having, in exactly the same fashion as 

described in the previous section. The intended target meaning of get is then inferred 

from Having by a Direct Extension inference. 

9.3. Relation to Analogy 

As discussed in Chapter 2, there have been many previous approaches to metaphor 

that advocated an analogy-based solution to the problem. These approaches all attempted 

to compute a direct analogy between source and target domains, without reference to 

existing metaphorical structures. These approaches were all shown to be deficient in that 

the structure of the proposed analogical formulation was simply too unconstrained to be 

efficiently computable. 

The approach described in this chapter uses the partial structure provided by exist­

ing core-related metaphors to provided a more tractable formulation. In particular, the 

previously understood metaphor provides the object correspondences that are necessary 

to any analogical approach. In addition to these correspondences, the core structure of the 

target domain of the known metaphor considerably reduces the number of concepts con­

sidered in the analogical matching phase. 

9.4. Summary 

This chapter has shown how the partial metaphorical structuring of a domain can 

be used to understand new metaphors that incrementally extend this structure. The stra­

tegy employed to accomplish this extension is based :10n the Metaphor Preservation 

Principle. The use of this principle yields a formulatior. f the problem that corresponds 

to a simple analogical inference. 

- 162-



Chapter 10 

Previous Literature Revisited 

10.1. Introduction 

This chapter demonstrates how MIDAS can handle some representative examples 

from the previous literature discussed in Chapter 2. The examples presented here will all 

be cases where MIDAS lacks an appropriate metaphor and proceeds to understand the 

new use by reference to an existing metaphor. The purpose of this chapter is not to sim­

ply show that my system can handle examples from previous systems. Rather, a 

reanalysis of these examples from a knowledge-based conventional metaphor perspective 

will be presented. Each example will be analyzed it terms of how it fits into a complex 

system of already understood metaphors. The following examples from the literature 

will be demonstrated. 

(1) N is at zero. 
(2) N goes from one to fifty. 

(3) Britain entered the Common Market. 
(4) Britain tried to leave the Common Market. 

(5) Robbie's running ate up the distance. 
(6) Inflation is eating up our savings. 

(7) My car drinks gasoline. 

(8) John has a solution. 
(9) Johnfound a solution. 

(10) John searched for a solution. 

This method of considering these examples will illustrate a number of points. First 

it will show how the MES can handle problems that these previous systems handled. 

- 163 -



More importantly, however, the analysis will shed some light on why these previous sys­

tems worked as well as they did. These previous approaches, for the most part, analyzed 

these examples from the perspective of attempting to draw analogical inferences from the 

source to the target domains directly. This led to analyses that attempted to find or create 

similarities between the source and target concepts. We will see that some of the pur­

ported similarities between the source and target domains that these previous systems 

relied upon arise from the fact that the target domains were structured in terms of exist­

ing conventional metaphors. The power of these systems, therefore, arose not from their 

analogical reasoning capabilities, but rather from the implicit use of conventional meta­

phoric knowledge. 

10.2. Hobbs 
As discussed in Chapter 2, Hobbs ( 1979) makes a proposal that corresponds to the 

notion of the explicit representation of conventional metaphorical knowledge. He cites 

the following examples as evidence of the existence of a metaphor schema that identifies 

a variable having a value with the notion of location. He further goes on to say that (12) 

follows from (11) because at and go "are intricately woven together by their reference to 

a small set of common predicates". This is exactly the kind of phenomena captured by a 

core-relationship. 

(11) N is at zero. 
(12) N goes from one to fifty. 

The location metaphor cited by Hobbs is a pervasive one in English. The use of 

location to indicate state is matched only by the use of possession to indicate state. The 

following examples will show how the MES can instantiate a specific metaphor from an 

abstract high level one to account for (11). This new specific metaphor will in turn be 

used as the basis for a core extension to cover the use of go in (12). 

> (do-sentence) 

Interpreting sentence: 

N is at zero. 

Interpreting primal input. 

(A Is-Atl4 (i Is-At) 

(agent615 (i agent) (A N72 (iN))) 

(patient576 (i patient) (A Ze.::-o9 (i Zero)))) 

Concreting input relations. 

Concreting patient to location-of. 

Concreting agent to located-object. 

- 164-



Interpreting concreted input. 

(A Is-Atl4 (i Is-At) 

(located-objectll (i located-object) 

(A N72 (i N))) 

(location-ofll ci location-of) 

(A Zero9 (i Zero)))) 

Failed interpretation: Is-Atl4 as Is-At. 

Valid known metaphorical interpretation. 

Applying conventional metaphor At-State. 

(A At-State (i Location-Metaphor Metaphor-Schema) 

(location-value location-of -+ state-value) 

(located-state-holder located-object -+ state-object) 

(is-at-state Is-At-+ State)) 

At this point, the system has identified the extremely abstract At-State metaphor 

as a valid interpretation of the input. 

Mapping input concept Is-Atl4 to concept State77 

Mapping input role location-ofll with filler Zero9 to 

target role state-valuel02 

Mapping input role located-objectll with filler N72 to 

target role state-object90 

Yielding interpretation: 

(A State77 (i State) 

(state-valuel02 ci state-value) 

(A Zero9 (i Zero))) 

(state-object90 ci state-object) 

(A N7 2 ( j . N) ) ) ) 

The system then checks for valid concretions of the abstract concept state77. In 

this case, the system can successfully concrete the abstract concept down to the more 

specific concept Variable-Value. 

Concretion yields: 

(A Variable-Value35 (i Variable-Value) 

(variable-w-val36 ci variable-w-val) 

(A N72 (i N))) 

- 165-



(value-of-variable36 (i value-of-variable) 

(A Zero9 (i Zero)))) 

Creating new metaphor: 

Mapping main source concept Is-At to main target concept Variable-Value. 

Mapping source role located-object to target role variable-w-val. 

Mapping source role location-of to target role value-of-variable. 

(A Is-At-Variable-Value (i At-State) 

(location-of-value-of-variable-map location-of ~ value-of-variable) 

(located-object-variable-w-val-map located-object ~ variable-w-val) 

(is-at-variable-value-map Is-At~ Variable-Value)) 

This instantiation of a new metaphor is a behavior of the system that has not been 

previously demonstrated. TheMES was not called because a valid known metaphor was 

found and applied. The system, however, decided to instantiate a more specific meta­

phor. This behavior will be described more fully below. 

Final interpretation of input: 

(A Variable-Value35 <i Variable-Value) 

(variable-w-val36 <i variable-w-val) 

(A N72 (i N))) 

(value-of-variable36 (i value-of-variable) 

(A Zero9 (i Zero)))) 

In this example, the system found and applied a known metaphor to obtain the tar­

get concept. This concept was then concreted to the intended meaning. In previous 

cases, this process did not result in the creation of a new more specific metaphor. In 

those cases where a concretion is made from the target concept of the metaphor to a more 

specific concept, the system keeps track of how difficult the concretion was to make. This 

difficulty is measured in the number of concepts that the concretion process had to con­

sider before an appropriate meaning was found. In those cases where this difficulty rank­

ing is above a cenain threshold, a new more specific metaphor is created. In future pro­

cessing the new metaphor can be applied directly without having to perform a costly con­

cretion. 

In this case, the system found that the concretion from the abstract concept state 

to the concept variable-Value was difficult enough to warrant the creation of a new 

more specific metaphor representing the location for variable-value metaphor. 

Once the new specific core metaphor has been generated from the abstract meta­

phor, core extension inferences are used to elaborate the core based on new input 

- 166-



examples. The previous example instantiated the new metaphor Is-At-Variable­

value. The following example elaborates it to cover the use of go in (12). 

> (do-sentence) 

Interpreting sentence: 

N goes from one to fifty. 

Interpreting primal input. 

(A Moves-To2 (i Moves-To) 

(agent66 (i agent) (A Nl4 (i N))) 

(to2 (i to) (A Fiftyl2 (i Fifty))) 

(from2 (i from) (A One2 (i One)))) 

Concreting input relations. 

Concreting from to moved-from. 

Concreting to to moved-to. 

Concreting agent to moved. 

Interpreting concreted input. 

(A Moves-To2 (i Moves-To) 

(moved2 (i moved) (A Nl4 (iN))) 

(moved-to2 (i moved-to) 

(A Fiftyl2 (i Fifty))) 

(moved-from2 (i moved-from) 

(A One2 (i One)))) 

Failed interpretation: Moves-To2 as Moves-To. 

No valid interpretations. Attempting to extend existing metaphor. 

===========~=============================================== 

Entering Metaphor Extension System 

Searching for related known metaphors. 

Metaphors found: Is-At-Variable-Value At-State 

Selecting metaphor Is-At-Variable-Value to extend from. 

- 167-



(A Is-At-Variable-Value (i At-State) 

(location-of-value-of-variable-map location-of -t value-of-variable) 

(located-object-variable-w-val-map located-object -t variable-w-val) 

(is-at-variable-value-map Is-At -t Variable-Value)) 

The search phase identifies two metaphors as being potentially useful. One is the 

original At-State metaphor the other is the newly created Is-At-Variable-Value 

metaphor. The evaluation phase chooses the metaphor that is closest to the input con­

cepts in conceptual distance. The roles in the Is-At-Variable-Value metaphor are 

more specific, and hence are closer to the input roles of a variable and a number than the 

more abstract roles in the Is-At-Variable-Value metaphor. 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Is-At-Variable-Value 

with target concept Variable-Value. 

This is a direct extension inference. 

Applying source path: 

Moves-To -t move-to-res -t Is-At 

to target concept Variable-Value yields target connection. 

Variable-Value -t ch-var-val-res* -t Change-Variable-Value 

Applying source path yields target concept Change-Variable-Value. 

(A Change-Variable-Valuel 

(i Change-Variable-Value) 

(variable-changedl (i variable-changed) 

(A Nl4 (i N))) 

(final-variable-valuel 

(i final-variable-value) 

(A Fifty12 (i Fifty)))) 

Creating new metaphor: 

Mapping main source concept Moves-To to main target concept 

Change-Variable-Value. 

Mapping source role moved to target role variable-changed. 

Mapping source role moved-to to target role final-variable-value. 

(A Moves-To-Change-Variable-Value (i Metaphor-Schema) 

- 168-



(moved-to-final-variable-value-map moved-to ~ final-variable-value) 

(n.oved-variable-changed-map moved ~ variable-changed) 

(moves-to-change-variable-value-map Moves-To ~ Change-Variable-Value) ) 

A new metaphor is now created to represent the conceptual use of changing location 

to mean a change of a variable's value. 

Final interpretation of input: 

(A Change-Variable-Valuel 

(i Change-Variable-Value) 

(variable-changedl (i variable-changed) 

(AN14 (iN))) 

(final-variable-valuel 

(i final-variable-value) 

(A Fiftyl2 (i Fifty)))) 

10.3. Wilks 

As described in Chapter 2, Wilks (1978) proposed a system that could infer the 

meaning of the metaphor in (13), when given a complete episodic representation that 

includes the intended target concept in the representation. 

(13) Britain entered the Common Market. 

( 14) Britain tried to leave the Common Market. 

Wilks points out that even after such a system has understood (13), Example (14) 

still can not be handled. This is because there can be no representation of the event of 

Britain leaving the Common Market in the context since it has never occurred. The obvi­

ous problem with this approach is that it ignores the long term semantic connections in 

the source domain. In particular, the core relationships among concepts in the source 

domain are not used. In this case, the relationships of interest are those involving enrer­

ing, leaving, and being in enclosures or environments. The following example shows 

how theMES can make use of this kind of knowledge. 

> (do-sentence) 

Interpreting sentence: 

Britain tried to leave the common market. 

Interpreting primal input. 

- 169-



(A Leaving22 (i Leaving) 

(agent607 (i agent) 

(A Britain47 (i Britain))) 

(patient570 (i patient) 

(A Common-Market23 (i Common-Market)))) 

Concreting input relations. 

Concreting patient to left. 

Concreting agent to leaver. 

Interpreting concreted input. 

(A Leaving22 (i Leaving) 

(leaver22 (i leaver) 

(A Britain47 (i Britain))) 

(left22 <i left) 

(A Common-Market23 (i Common-Market)))) 

Failed interpretation: Leaving22 as Leaving. 

No valid interpretations. Attempting to extend existing metaphor. 

=========================================================== 
Entering Metaphor Extension System 

Searching for related known metaphors. 

Metaphors found: Enter-Association Enter-Lisp 

Selecting metaphor Enter-Association to extend from. 

(A Enter-Association <i Enter-Metaphor Metaphor-Schema) 

(association-enterer enterer -+ associator) 

(entered-association entered-+association-of-associate) 

(enter-associate Entering-+ Associate-Action)) 

Attempting a core-related metaphorical extension. 

The system finds and selects a known core-related metaphor that represents the idea 

that the action of associating with an association can be viewed as entering the associa-

- 170-



tion. 

Extending similar core-related metaphor Enter-Association 

with target concept Associate-Action. 

This is an intermediate extension inference. 

Applying source path: 

Leaving -+ leave-pre -+ Enclosed-State -+ enter-res* -+ Entering 

to target concept Associate-Action yields target connection. 

Associate-Action -+ associate-result -+ Associated-State 

-+ disassociate-pre* -+ Disassociate-Action 

Applying source path yields target concept Disassociate-Action. 

The system has applied the long term semantic connections between entering and 

leaving and applied them to the target domain to yield the following concept. 

(A Disassociate-Action22 (i Disassociate-Action) 

(disassociator22 (i disassociator) 

(A Britain47 (i Britain))) 

(disassociated22 (i disassociated) 

(A Cornmon-Market23 (i Common-Market)))) 

Creating new metaphor: 

Mapping main source concept Leaving to main target concept 

Disassociate-Action. 

Mapping source role leaver to target role disassociator. 

Mapping source role left to target role disassociated. 

(A Leaving-Disassociate-Action (i Metaphor-Schema) 

(left-disassociated-map left -+ disassociated) 

(leaver-disassociator-map leaver -+ disassociator) 

(leaving-disassociate-action-map Leaving-+ Disassociate-Action)) 

Final interpretation of input: 

(A Trying24 (i Trying) 

(tried20 (i tried) 

(A Disassociate-Action22 

(i Disassociate-Action) 

(disassociator22 (i disassociator) 

- 171 -



(A Britain47 (i Britain))) 

(disassociated22 (i disassociated) 

(A Common-Market23 (i Common-Market))))) 

(agent606 (i agent) 

(A Britain47 (i Britain)))) 

10.4. DeJong and Waltz 

DeJong and Waltz (1983) present a model of metaphor understanding based purely 

on analogical matching of source and target concepts directly. Consider the following 

example. 

(15) Robbie's running ate up the distance. 

The proposed processing for this example suggests an analogical match between 

eating and running that focusses on the fact that eating reduces the available amount of 

food, and running reduces a distance. The problem with this approach and others like it 

is the necessary ability to focus on this notion of reduction as the relevant concept among 

all the various concepts underlying running and eating. In MIDAS, this focus is obtained 

by using previously understood metaphors as a guide. This use of eat-up to mean reduce 

an amount has already been demonstrated by (16), discussed in Chapter 5. 

(16) Inflation is eating up our savings. 

Instead of attempting to match eat against running to obtain reduce, the system 

uses this previous use of eat-up to mean reduce an amount. 

> (do-sentence) 

Interpreting sentence: 

Robbie 's running ate up the distance. 

Interpreting primal input. 

(A Running26 (i Running) 

(agent609 (i agent) (A Robbie29 (i Robbie)))) 

In this example, the system determines that there are two primal input concepts that 

are judged to require further interpretation. The first is the running in the subject of the 

- 172-



sentence. This is found to have an appropriate literal interpretation. 

Concreting input relations. 

Concreting agent to runner. 

Interpreting concreted input. 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie)))) 

Valid literal interpretation. 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie)))) 

Final interpretation: 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie)))) 

The next clause contains the concept eating-up underlying ate up. This also requires 

further interpretation. 

Interpreting primal input. 

(A Eating-Up62 (i Eating-Up) 

(agent608 (i agent) 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie))))) 

(patient571 <i patient) 

(A Distance31 (i Distance)))) 

Concreting input relations. 

Concreting agent to eater-of-eating-up. 

Concreting patient to eaten-up. 

Interpreting concreted input. 

(A Eating-Up62 (i Eating-Up) 

(eater-of-eating-up68 

- 173-



(i eater-of-eating-up) 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie))))) 

(eaten-up40 (i eaten-up) 

(A Distance31 (i Distance)))) 

Failed interpretation: Eating-Up62 as Eating-Up. 

Failed interpretation: Eating-Up62 as Eat-Up-Reduce-Money. 

No valid interpretations. Attempting to extend existing metaphor. 

Entering Metaphor Extension System 

========================================================~== 

Searching for related known metaphors. 

Metaphors found: Eat-Up-Reduce-Money 

Selecting metaphor Eat-Up-Reduce-Money to extend from. 

(A Eat-Up-Reduce-Money (i Eating-Metaphor Metaphor-Schema) 

(eaten-reduced eaten-up -+ money-reduced) 

(eater-reducer eater-of-eating-up -+ money-reducer) 

(eatup-reduce Eating-Up-+ Money-Loss)) 

The system has found and will now attempt to apply the previously understood 

metaphorical use of eat-up. 

Attempting a similarity extension inference. 

Extending similar metaphor Eat-Up-Reduce-Money with target concept Money-Loss. 

Abstracting Money-Loss to ancestor concept Reduce-Amount producing 

abstract target meaning: 

(A Reduce-Amount47 (i Reduce-Amount) 

(reducedl5 (i reduced) 

(A Distance31 (i Distance))) 

(reducer45 (i reducer) 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie)))))) 

- 174-



' 

Concreting target concept Reduce-Amount to Reduce-Distance producing 

concreted meaning: 

(A Reduce-Distance23 (i Reduce-Distance) 

(distance-reducer24 (i distance-reducer) 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie))))) 

(distance-reduced23 (i distance-reduced) 

(A Distance31 (i Distance)))) 

Creating new metaphor: 

Mapping main source concept Eating-Up to main target concept 

Reduce-Distance. 

Mapping source role eater-of-eating-up to target role 

distance-reducer. 

Mapping source role eaten-up to target role distance-reduced. 

(A Eating-Up-Reduce-Distance (i Eating-Metaphor) 

(eaten-up-distance-reduced-map eaten-up ~ distance-reduced) 

(eater-of-eating-up-distance-reducer-mapeater-of-eating-up 

~ distance-reducer) 

(eating-up-reduce-distance-map Eating-Up~ Reduce-Distance)) 

The final interpretation of the sentence reflects the fact that the running is responsi­

ble for a reduction in distance. 

Final interpretation of input: 

(A Reduce-Distance23 (i Reduce-Distance) 

(distance-reducer24 (i distance-reducer) 

(A Running26 (i Running) 

(runner26 (i runner) 

(A Robbie29 (i Robbie))))) 

(distance-reduced23 (i distance-reduced) 

(A Distance31 (i Distance)))) 

- 175-



10.5. Fass 

Consider the following example from Fass (1987). 

(17) My car drinks gasoline. 

Fass makes extensive use of hierarchies to compute metaphorical analogies from the 

source to target domains. In interpreting this example, Fass uses the hierarchical rela­

tionships between the constraints on the literal meaning of the concept Drinking and the 

input examples to obtain an abstraction that partially accounts for this use. The relation­

ships focussed on are that drinking prefers that the thing drunk be a potable liquid, which 

is hierarchically related to gasoline at the concept liquid. 

Fass's approach is basically the same as performing the abstraction stage of a simi­

larity extension inference on the source domain directly. In MIDAS, the abstraction is 

applied to the target concept of a known metaphor that is presumably much closer con­

ceptually to the intended meaning than the source concept is. The other major difference 

is that Fass makes no attempt to concrete the abstract concept to an appropriately more 

specific concept. In this example, the concept returned is that a car uses gasoline. 

Where use is an abstract predicate covering any kind of using. 

The meaning of drink in this example seems to focus more on the notion of a car 

consuming or using up its gasoline rather than the fact that it uses it to function. In the 

following example, the MES uses the previously understood eating-up metaphors that 

have as target meanings concepts having to do with reducing amounts. The system finds 

these metaphors by noticing the close core relationship between drinking and eating-up. 

> (do-sentence) 

Interpreting sentence: 

My car drinks gasoline. 

Interpreting primal input. 

(A Drinking22 (i Drinking) 

(agent610 (i agent) (A Car28 (i Car))) 

(patient572 (i patient) 

(A Gasoline22 (i Gasoline)))) 

Concreting input relations. 

Concreting patient to drunk. 

Concreting agent to drinker. 

Interpreting concreted input. 

- 176-



\ 

(A Drinking22 (i Drinking) 

(drinkerl8 (i drinker) (A Car2 8 (i Car) ) ) 

(drunkl8 (i drunk) 

(A Gasoline22 <i Gasoline)))) 

Failed interpretation: Drinking22 as Drinking. 

No valid interpretations. Attempting to extend existing metaphor. 

=========================================================== 

Entering Metaphor Extension System 

======================================================-==== 

Searching for related known metaphors. 

Metaphors found: Eat-Up-Reduce-Money Eating-Up-Reduce-Distance 

Selecting metaphor Eat-Up-Reduce-Money to extend from. 

(A Eat-Up-Reduce-Money (i Eating-Metaphor Metaphor-Schema) 

(eaten-reduced eaten-up ~ money-reduced) 

(eater-reducer eater-of-eating-up ~ money-reducer) 

(eatup-reduce Eating-Up~ Money-Loss)) 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Eat-Up-Reduce-Money 

with target concept Money-Loss. 

This is an intermediate extension inference. 

Applying source path: 

Drinking ~ drinking-result ~ Ingested-State ~ eaten-up-result* 

~ Eating-Up 

to target concept Money-Loss yields target connection. 

Money-Loss ~ money-loss-result ~ Money-Loss-State ~ money-loss-result* 

~ Money-Loss 

Applying source path yields target concept Money-Loss. 

Abstracting Money-Loss to ancestor concept Reduce-Amount producing 

abstract target meaning: 

- 177-



(A Reduce-Amount48 (i Reduce-Amount) 

(reducerl6 (j reducer) 

(A Car28 (j Car))) 

(reducedl6 (i reduced) 

(A Gasoline22 (i Gasoline)))) 

concreting Reduce-Amount48 to concept Reduce-Amount. 

Yielding concept: 

(A Reduce-Amount48 (i Reduce-Amount) 

(reducerl6 (j reducer) 

(A Car28 (j Car))) 

(reducedl6 (i reduced) 

(A Gasoline22 (i Gasoline)))) 

Creating new metaphor: 

Mapping main source concept Drinking to main target concept Reduce-Amount. 

Mapping source role drinker to target role reducer. 

Mapping source role drunk to target role reduced. 

(A Drinking-Reduce-Amount (i Metaphor-Schema) 

(drunk-reduced-map drunk ~ reduced) 

(drinker-reducer-map drinker ~ reducer) 

(drinking-reduce-amount-map Drinking~ Reduce-Amount)) 

Final interpretation of input: 

(A Reduce-Amount48 (i Reduce-Amount) 

(reducerl6 (j reducer) 

(A Car28 (j Car))) 

(reducedl6 (i reduced) 

(A Gasoline22 (i Gasoline)))) 

10.6. Russell 

Russell (197 6) presents a series of examples that use Conceptual Dependency as the 

underlying representation. The approach taken is another heuristic matching algorithm 

that directly matches source and target domains. There is, however, an interesting facet 

to Russell's examples. The systems success is derived to a large extent from the 

matcher's ability to match the conceptual primitives PTRANS and MTRANS. These are 

represented as similar concepts. A PTRANS is a kind of transfer of a physical object. 

- 178-



An MTRANS is taken to be a kind of transfer where thoughts are the objects transferred 

and the locations of the transfers are taken to be minds. Given this structuring there is a 

high degree of match between the source and target domains of her examples. 

As noted in Chapter 2, the CD primitive MTRANS is based on an underlying set of 

conventional metaphors. The metaphors that an idea is an object, and that the transfer 

and possession of these objects refers to knowing and communicating ideas, are codified 

directly into the primitive MTRANS. This reflects the fact that this is a highly embedded 

core metaphor in English. Consider the following metaphors from Russell. 

(18) John has a solution. 
(19) Johnfound a solution. 
(20) John searched for a solution. 

Russell matches the various PTRANS and POSS concepts underlying the uses of 

has, search, and find against MTRANS and MPOSS concepts to yield the correct mean­

ings. In the following examples, the MES uses an explicit representation of the conven­

tional metaphor that possession is knowing, underlying (18), to interpret (19). The meta­

phor learned in that example is then further extended to cover (20). 

> (do-sentence) 

Interpreting sentence: 

John found a solution. 

Interpreting primal input. 

(A Finding9 (i Finding) 

(agent612 <i agent) (A John149 (i John))) 

(patient573 (i patient) 

(A Solution20 (i Solution)))) 

Concreting input relations. 

Concreting patient to found. 

Concreting agent to finder. 

Interpreting concreted input. 

(A Finding9 (i Finding) 

(finder9 (i finder) (A John149 (i John))) 

(found9 (i found) 

(A Solution20 <i Solution)))) 

Failed interpretation: Finding9 as Finding. 

- 179-



No valid interpretations. Attempting to extend existing metaphor. 

====~==~===~-============================================== 

Entering Metaphor Extension System 

=========-~-=============================================== 

Searching for related known metaphors. 

Metaphors found: Have-Idea Have-Permission 

Needing-Required-Permission 

Giving-Permit-Action Have-Cold Have-State Get-Grade Give-Flu 

Selecting metaphor Have-Idea to extend from. 

(A Have-Idea (i Have-State Metaphor-Schema) 

(had-known had ~ known) 

(haver-knower haver ~ knower) 

(have-idea-map Having~ Knowing)) 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Have-Idea 

with target concept Knowing. 

This is a direct extension inference. 

Applying source path: 

Finding ~ find-result ~ Having 

to target concept Knowing yields target connection. 

Knowing ~ conclude-result* ~ Concluding 

Applying source path yields target concept Concluding. 

(A Concluding12 (i Concluding) 

(concluderll (i concluder) 

(A John149 (i John))) 

(concluded? (i concluded) 

(A Solution20 (i Solution)))) 

Creating new metaphor: 

Mapping main source concept Finding to main target concept Concluding. 

- 180-



Mapping source role finder to target role concluder. 

Mapping source role found to target role concluded. 

(A Finding-Concluding (i Metaphor-Schema) 

(found-concluded-map found ~ concluded) 

(finder-concluder-map finder ~ concluder) 

(finding-concluding-map Finding~ Concluding)) 

A new metaphor is now created to represent the idea that coming to a conclusion 

can be viewed as finding an idea. 

Final interpretation of input: 

(A Concludingl2 (i Concluding) 

(concluderll (i concluder) 

(A Johnl49 (i John))) 

(concluded7 (i concluded) 

(A Solution20 (i Solution)))) 

In the previous example, the system applied the core related Have-Idea metaphor 

to the metaphorical use of finding. Once this has been understood it creates a new 

metaphor representing this use. This new metaphor can now be extended to cover the 

following use of search based on the core relationship between searching and finding. 

> (do-sentence) 

Interpreting sentence: 

John searched for a solution. 

Interpreting primal input. 

(A Searching7 (i Searching) 

(agent78 (i agent) (A Johnl4 (i John))) 

(for7 (i for) (A Solutionl3 (i Solution)))) 

Concreting input relations. 

Concreting for to searched-for. 

Concreting agent to searcher. 

Interpreting concreted input. 

(A Searching7 (i Searching) 

- 181 -



(searcher? (i searcher) (A Johnl4 <i John))) 

(searched-for? (i searched-for) 

(A Solutionl3 (i Solution)))) 

Failed interpretation: Searching? as Searching. 

No valid interpretations. Attempting to extend existing metaphor. 

Entering Metaphor Extension System 

=~====~=~==~=~~======~==========================~~-======== 

Searching for related known metaphors. 

Metaphors found: Finding-Concluding Have-Idea Searching-Investigating 

Have-Permission Needing-Required-Permission Giving-Permit-Action 

Have-Cold Have-State Get-Grade Give-Flu 

Selecting metaphor Finding-Concluding to extend from. 

(A Finding-Concluding (i Metaphor-Schema) 

(found-concluded-map found -+ concluded) 

(finder-concluder-map finder -+ concluder) 

(finding-concluding-map Finding-+ Concluding)) 

The system finds and decides to apply the newly created finding metaphor. 

Attempting a core-relate~ metaphorical extension. 

Extending similar core-related metaphor Finding-Concluding 

with target concept Concluding. 

This is a direct extension inference. 

Applying source path: 

Searching -+ intended-result -+ Finding 

to target concept Concluding yields target connection. 

Concluding -+ investigated-result* -+ Investigating 

- 182-



\ 

Applying source path yields target concept Investigating. 

(A Investigating4 (i Investigating) 

(investigatorS (i investigator) 

(A Johnl4 (i John))) 

(investigated4 (i investigated) 

(A Solutionl3 (i Solution))) 

(investigated-torS (i investigated-for) 

(A Solutionl3 ~~-))) 

Mapping main source concept Searching to main target concept Investigating. 

Mapping source role searcher to target role investigator. 

Mapping source role searched-for to target role investigated. 

(A Searching-Investigating (i Metaphor-Schema) 

(searched-for-investigated-map searched-for ~ investigated) 

(searcher-investigator-map searcher ~ investigator) 

(searching-investigating-map Searching~ Investigating)) 

Final interpretation of input: 

(A Investigating4 (i Investigating) 

(investigatorS (i investigator) 

(A Johnl4 (i John))) 

(investigated4 (i investigated) 

(A Solutionl3 (i Solution))) 

(investigated-torS (i investigated-for) 

(A Solutionl3 ~~~))) 

10.7. Summary 

A reanalysis of some examples from the previous literature shows that they can 

effectively be handled by the MIDAS approach. In addition, the reanalysis of these pre­

vious examples in terms of conventional metaphor shed some light on the workings of 

these previous systems. In particular, the seemingly ad-hoc construction of similar 

source and target domains in these approaches typically arises from the researcher's 

incorporation of conventional metaphors directly into the representation of various target 

domains. 

- 183-



Chapter 11 

Conclusions 

11.1. Introduction 

The MIDAS approach to metaphor developed as a reaction against previous 

knowledge-deficient approaches. Two factors characterize these approaches: powerful 

special purpose analogy programs, and little or no explicit knowledge about the meta­

phors in the language. In contrast, MIDAS uses large amounts of specific knowledge 

about the metaphors in the language, and relies upon processes that are fundamentally the 

same as those already needed to interpret non-metaphorical knowledge. This approach 

arises from the simple belief that metaphor is a normal conventional part of language. 

MIDAS has demonstrated the effectiveness of this knowledge-based approach. In 

particular, it has achieved the following three results: it is possible to capture systematic 

knowledge about metaphor using straightforward knowledge representation techniques, 

this knowledge can be efficiently applied to interpret metaphoric language, and, finally, 

this knowledge can be systematically extended as new metaphors are encountered. The 

following sections will briefly review these results and then discuss some problems. 

11.2. Representation 

A detailed analysis of what needs to be represented necessarily precedes the task of 

constructing a knowledge base. This analysis should reveal the phenomena that needs to 

be captured and suggest certain requirements for how these phenomena should be cap­

tured. The analysis of conventional metaphor, given in Chapter 3, resulted in the follow­

ing requirements for the representation of metaphoric language. 

Fundamental Representational Requirement: Conventional metaphors must 

be explicitly represented as coherent sets of associations between source and 

target concepts. 

- 184-



Extended Metaphor Requirement: The representation of conventional meta­

phors must capture the fundamental phenomenon that a sharing of important 

core concepts underlies the perceived relationships among many separate 

metaphors. 

Sharing Requirement: The representation of the component associations of 

metaphors must facilitate the hierarchical sharing of these component parts 

among distinct metaphors. 

Similarity Requirement: The representation of conventional metaphors must 

capture the similarity relationships among metaphors. 

Chapter 4 demonstrated how these requirements were met through the use of the 

KODIAK representation language. The key to the use of KODIAK was the decision to 

elevate metaphors and their component associations to the level of full-fledged KODIAK 

concepts. The combination of the structured association and inheritance mechanisms of 

KODIAK successfully satisfies these representational requirements. 

11.3. Interpretation 

The fundamental motivation behind the explicit representation of this metaphoric 

knowledge was to capture the intuition that metaphors are a normal and conventional part 

of language. The normal processing of metaphoric language should proceed through the 

application of this specific knowledge. Moreover, this processing should as much as pos­

sible reflect the belief that metaphor is an ordinary aspect of language. The mechanisms 

proposed should not be fundamentally different from those used to understand non­

metaphorical language. 

MIDAS has successfully achieved these goals. The concretion and metaphoric 

unviewing inferences that select an appropriate interpretation are fundamentally the same 

kind of constraint checking mechanisms. These mechanisms choose among the plausible 

conventional interpretations by seeing how well each interpretation meets the constraints 

imposed by the utterance. This constraint driven choice of interpretation is fundamen­

tally the same for both metaphoric and non-metaphoric language. The selection or rejec­

tion of a metaphoric interpretation is based solely upon how well it rpeets these con­

straints. It is in no way dependent upon the well-formedness of the literal reading. 

MIDAS, therefore, avoids giving any centrality to the literal interpretation. 

11.3.1. Word-Senses Versus Conventional Metaphors 

The distinction between a conventional metaphor and a fully lexicalized word-sense 

has become blurred in MIDAS. Many of the examples that have been presented here as 

conventional metaphors would have been treated as distinct unmotivated word-senses in 

- 185-



most previous analyses. This section first considers the relationship between traditional 
word-senses and the representation of specific conventional metaphors. It then discusses 
the role that traditional word-senses play in the MIDAS approach. 

Recall that, as discussed in Chapter 2, the distinct word-sense approach attempts to 
identify all the distinct uses of a given word and represent each as a separate fact in the 
lexicon. No attempt is made to relate these various meanings nor is any attempt made to 
account for the systematic use of related words. This approach succeeds in accomplish­
ing two goals. The first is that it captures the intuition that these senses are conventional 
pans of the language, and should, therefore, be accounted for by specific knowledge. The 
second is that it provides an efficient basis for the interpretation of this non-literal con­
ventional language. 

One way to view the notion of a conventional metaphor is as an extension to the 
idea of a word-sense. Specific conventional metaphors can be viewed as structured 
word-senses, where the metaphoric motivation for the sense is represented directly as a 
pan of the meaning. The conventionality of these uses is captured directly by the 
representation of the conventional metaphors in the same way that listing individual 
senses captures conventionality. The interpretation of these conventional metaphors is 
efficiently accomplished by mechanisms that are fundamentally the same as those used to 
apply knowledge about distinct word-senses. The metaphoric knowledge approach, there­
fore, captures conventionality and allows efficient interpretation, while at the same time 
capturing systematic metaphoric information that can not be captured by individual 
word-senses. 

There are, of course, distinct word-senses that have no obvious systematic meta­
phoric basis. In the MIDAS approach, these senses are simply represented as distinct 
non-metaphoric concepts that are directly attached to the lexical item. During interpr:ta­
tion, each of these senses is considered along with all the other non-metaphoric conven­
tional uses. MIDAS, therefore, handles non-metaphoric word-senses in basically the 
same way as in traditional approaches. 

The key issue, however, is how to decide when to represent a use as a distinct sense 
as opposed to a metaphor. The bias in the MIDAS approach has been to treat each sense 
as a metaphor if there is any evidence that this use is systematically related to an existing 
metaphor. This decision must result from a fine-grained semantic analysis, along the 
lines of the analyses given in Chapter 3. This bias towards metaphoric motivations may 
lead to the representation of some senses as metaphors, when, in fact, they may actually 
be independent senses. However, as discussed above, this will not result in any 
significant problems for MIDAS. Sentences involving these uses can still be properly 
interpreted by the Metaphor Interpretation System. The only cost is in the space taken by 
the representation of the metaphor. 

- 186-



,~ooo.. 

11.4. Learning 

The primary objection to the knowledge-based approach to metaphor has always 
been that it doesn't handle "real" metaphors, ie., it can only deal with metaphors that are 
already a convention of the language. This thesis has shown that this need not be the 
case. The addition of explicit knowledge of the metaphors in the language radically 
alters the way that new metaphors are dealt with. It is no longer necessary to consider 
them as isolated anomalous inputs that have to be understood using special-purpose 
mechanisms. Rather, they are considered to be new, as yet unencountered, metaphors 
that must coherently fit into the system of existing known metaphors. The system of 
known metaphors, therefore, provides the basis for learning new ones. 

When MIDAS learns a new metaphor there are two gains, one is immediate and 
one potential. The immediate gain is that the input example has been successfully inter­
preted and that this use is remembered in the form of a new metaphor. When this use is 
encountered again during future processing the newly learned metaphor can be used 
directly to interpret it correctly. 

The potential gain has to do with future learning. In addition to serving as the con­
ventional interpretation of metaphors of the same type, the newly learned metaphor can 
serve as a candidate metaphor for future learning. Consider the following examples from 
Chapters 5 and 10. 

(1) Inflation is eating up our savings. 
(2) Robbie's running ate up the distance. 
(3) My car drinks gasoline. 

When MIDAS originally learned the Eat-Up-Reduce-Money metaphor underlying 
(1), it was not anticipated that this metaphor would subsequently serve as the basis for an 
extension to (2) and (3). Each newly learned metaphor, therefore, has the potential to 
serve as the basis for a future extension. 

11.5. Problems 

There are four shortcomings in MIDAS's learning abilities that constitute areas for 
significant future research. The first is mainly a limitation in MIDAS, rather than a chal­
lenge to the overall approach. MIDAS's similarity and core-extension inferences clearly 
do not exhaust the ways in which known metaphors can be extended. In particular, these 
inferences do not address the issue of how to create new metaphors by combining exist­
ing ones. 

Consider the metaphor underlying the phrase communicate a disease. This meta­
phor seems to be a combination of two existing metaphors: the Infection-As-Transfer 
metaphor, discussed earlier, and the Conduit metaphor (Reddy 1979). The Conduit 

- 187-



metaphor allows communication to be viewed as a transfer, where ideas are objects that 

can be transferred and possessed. It seems that the Infection-As-Transfer and 

Communication-As-Transfer metaphors are combining to form an Infection-As­

Communication metaphor. This combination of existing metaphors does not correspond 

to either a core or similarity extension. Although MIDAS cannot perform this kind of 

metaphor combination, it is not inconsistent with the overall model, since it involves the 

combination of known metaphors. 

The second problem with MIDAS's learning model is more fundamental. Recall 

that a learning episode in MIDAS consists of two pans. First the meaning of the input 

metaphor is determined and then a new metaphor is created to represent this new use. 
While it seems reasonable to believe that a single instance of an unknown metaphor can 
be understood, it seems less likely that it would become an equal pan of the 

understander' s metaphoric knowledge, based upon a single instance. It seems more rea­
sonable to believe that long-term knowledge of conventional metaphors is acquired and 

reinforced through repeated exposure. This kind of learning is not captured in MIDAS. 

The next problem with MIDAS is that the issue of bootstrapping is not addressed. 

The learning mechanism relies on the existence of a set of already well-understood meta­

phors that form the basis for extension. The obvious question is where do the initial 
metaphors come from? There are two answers to this problem. The first answer is that 
there seems to be a built-in bias towards certain core metaphorical associations, based 

upon the way humans physically interact with the world (Gardner 1974, Lakoff 1986). A 

more practical answer, from the point of view of a computer system lacking this embodi­

ment, is that these initial uses can be understood and remembered from contextual infor­

mation using mechanisms similar to those suggested by (Granger 1977, Selfridge 1981, 
and Zernik 1987). Once these initial associations are formed, they can be extended using 

the techniques provided by MIDAS. 

The final shortcoming in MIDAS has to do with target concept formation. MIDAS 

is concerned with the acquisition of metaphors that link well-understood source and tar­

get domains. It seems clear, however, that there are target concepts that are in large pan 

learned almost exclusively through exposure to metaphors. Burstein (1986) panially 

addresses this issue in the context of students learning the semantics of variables in 

BASIC through exposure to a Container metaphor. The issue of concept formation 
through repeated exposure to systematic metaphors is a fertile one for future research. 

There is a bright side to all of these problems. Once the step has been taken to deal 

with metaphor from a knowledge-based point of view, then the knowledge is there to be 

used for a wide variety of purposes. The development of MIDAS has shown that this 

knowledge can be used for both interpretation and learning tasks. Except for the 

bootstrapping issue, all of the above problems can be addressed by finding new and better 

ways to make use of this knowledge. 

. 188-



Appendix A 

UNIX Examples 

A.l Introduction 

This appendix demonstrates the pervasive nature of metaphor in the UNIX domain. 

The following UNIX examples will be demonstrated. 

(1) How can I get into mail? 
(2) How can I get out of emacs? 

(3) How can I kill a file? 

(4) You have write permission. 
(5) You need write permission. 
(6) Chmod gives you write permission. 

The processing of Example (1) is an illustration of an extension by similarity, as 

described in Chapter 8. The system has knowledge of the Enter-Lisp metaphor. This 

metaphor will be extended, in this example, to cover entering the mail system by virtue 

of the hierarchical relationship between mail and lisp as processes. 

> (do-sentence) 

Interpreting sentence: 

How can I get into mail? 

Interpreting primal input. 

(A Enteringll (i Entering) 

(agentl2 (i agent) (A 112 (i I))) 

- 189-



(patientl2 (i patient) (A Mailll (i Mail)))) 

Concreting input relations. 

Concreting patient to entered. 

Concreting agent to enterer. 

Interpreting concreted input. 

(A Enteringll (i Entering) 

(entererll (i enterer) (A Il2 (i I))) 

(enteredll <i entered) (A Mailll (i Mail)))) 

Failed interpretation: Enteringll as Entering. 

Failed interpretation: Enteringll as Enter-Association. 

Failed interpretation: Enteringll as Enter-Lisp. 

No valid interpretations. Attempting to extend existing metaphor. 

At this point, all the possible conventional interpretations of the primal input have 
been eliminated as potential readings. The input is now passed over to the Metaphor 
Extension System in an attempt to extend an existing metaphor to cover this new use and 
determine the intended meaning. 

Entering Metaphor Extension System 

Searching for related known metaphors. 

Metaphors found: Enter-Lisp Enter-Association 

The first step in the extension step is to collect all the relevant known metaphors that 
might be related to this new use. This initial search scans through all the metaphors 
directly attached to the input concept, and also at all the metaphors attached to concepts 
core related to the input concept. In this case, the system has knowledge of two meta­
phors that share the same source concept with the current use. The metaphors are ranked 
according to their conceptual distance from the input concepts. 

Selecting metaphor Enter-Lisp to extend from. 

(A Enter-Lisp (i Container-Metaphor Metaphor-Schema) 

(enter-lisp-res enter-res ~ lisp-invoke-result) 

(lisp-enterer enterer ~ lisp-invoker) 

- 190-



(entered-lisp entered ~ lisp-invoked) 

(enter-lisp-map Entering~ Invoke-Lisp)) 

The metaphors whose target components are closest to the input concepts is selected 
as the candidate to try to extend. In this case, the Enter-Lisp metaphor is selected. 

Attempting a similarity extension inference. 

Extending similar metaphor Enter-Lisp with target concept Invoke-Lisp. 

Abstracting Invoke-Lisp to ancestor concept Invoke-Comp-Process producing 

abstract target meaning: 

(A Invoke-Comp-Process7 

(i Invoke-Comp-Process) 

(comp-process-invoked7 

(i comp-process-invoked) 

(A Mailll (i Mail))) 

(comp-process-invoker7 

(i comp-process-invoker) (A Il2 (i I)))) 

The first step in the extension process is to abstract the candidate target to a concept 
high enough in the hierarchy to accept the input roles. In this case, the candidate target 
concept Invoke-Lisp is given the input roles of I205 and Mail23. The first ancestor 
of Invoke-Lisp that can accept these inputs is the concept Invoke-Comp-Process. 

The input roles are then plugged into this more abstract concept to form a new instance 
of the category. This is shown as Invoke-Comp-Process7. 

Concreting target concept Invoke-Comp-Process to Invoke-Mailproducing 

concreted meaning: 

(A Invoke-Mailll (i Invoke-Mail) 

(mail-invokerll (i mail-invoker) 

(A Il2 (i I))) 

(mail-invokedll (i mail-invoked) 

(A Mailll (i Mail)))) 

The abstracted concept is then concreted to the most specific concept that can accept 
the input roles. In this case, the concept Invoke-Mail is found that can cover the input. 

- 191 -



This is the intended target meaning of the original metaphor. 

Creating new metaphor: 

Mapping main source concept Entering to main target concept Invoke-Mail. 

Mapping source role enterer to target role mail-invoker. 

Mapping source role entered to target role mail-invoked. 

(A Entering-Invoke-Mail (i Enter-Metaphor) 

(entered-mail-invoked-map entered ~ mail-invoked) 

(enterer-mail-invoker-map enterer ~ mail-invoker) 

(entering-invoke-mail-map Entering~ Invoke-Mail)) 

Once an appropriate target meaning has been found, a new metaphor sense is 

created to reflect the fact that a new metaphor has been learned. This new metaphor is 

made a sibling of the metaphor that was used to obtain the meaning of the new use. In 

this case, the new metaphor is installed as a sibling of the Enter-Lisp metaphor. In the 

same fashion, the individual metaphor-maps that make up the new metaphor are made 

siblings of the corresponding maps in the candidate metaphor. For example, the 

entered-mail-invoked-map is installed as a child of the parent of the entered-lisp 

map that it corresponds to in the Enter-Lisp metaphor. 

The names of the new metaphor and its maps are obtained by simply concatenating 

the names of the source and target concepts. In future processing, this metaphor can be 

applied directly by the co::1ceptual analyzer and can be used by the Metaphor Extension 

System as a candidate for further extensions. 

Final interpretation of input: 

(A How-Ql2 (i How-Q) 

(topicl2 ci topic) 

(A Invoke-Mailll (i Invoke-Mail) 

(mail-invokerll ci mail-invoker) 

(A 112 (i I))) 

(mail-invokedll ci mail-invoked) 

(A Mailll (i Mail)))))) 

Once the final representation of the sentence has been obtained, it is passed along to 

the UC system. In this case, the input concept Enteringl has been replaced by the con­

cept Invoke-Mailll and assigned to the topic role of the concept How-Ql2 that 

- 192-



represents the user's query. 

Calling UC on input: 

(A How-Q12 (i How-Q) 

(topic12 (i topic) 

(A Invoke-Mailll (i Invoke-Mail) 

(rnail-invokerll (i mail-invoker) 

(A I12 (i I))) 

(mail-invokedll (i mail-invoked) 

(A Mailll (i Mail)))))) 

UC: You can enter mail by typing mail to shell. 

In the following processing, Example ( 1) is processed again to show that the new 

metaphor has been learned. The new metaphor is applied directly, without MlDAS hav­

ing to resort to its Metaphor Extension System. 

> (do-sentence) 

Interpreting sentence: 

How can I get into mail? 

Interpreting primal input. 

(A Entering12 (i Entering) 

(agent13 (i agent) (A I13 (i I))) 

(patient13 (i patient) (A Mail12 (i Mail)))) 

Concreting input relations. 

Concreting patient to entered. 

Concreting agent to enterer. 

Interpreting concreted input. 

(A Entering12 (i Entering) 

(enterer12 (i enterer) (A I13 (i I))) 

(entered12 (i entered) (A Mail12 (i Mail)))) 

=ailed interpretation: Entering12 as Entering. 

Valid known metaphorical interpretation. 

- 193-



Applying conventional metaphor Entering-Invoke-Mail. 

(A Entering-Invoke-Mail (i Enter-Metaphor) 

(entered-mail-invoked-map entered -t mail-invoked) 

(enterer-mail-invoker-map enterer -t mail-invoker) 

(entering-invoke-mail-map Entering -t Invoke-Mail)) 

Mapping input concept Enteringl2 to concept Invoke-Maill2 

Mapping input role entererl2 with filler Il3 to 

target role mail-invokerl2 

Mapping input role enteredl2 with filler Maill2 to 

target role mail-invokedl2 

The new metaphor has been found and is being applied at this point. 

Yielding interpretation: 

(A Invoke-Maill2 (i Invoke-Mail) 

(mail-invokedl2 (i mail-invoked) 

(A Maill2 (i Mail))) 

(mail-invokerl2 (i mail-invoker) 

(A !13 (i I)))) 

The metaphor has been applied and the target meaning Invoke-Mail has instan­

tiated with its roles filled in. 

Failed interpretation: Enteringl2 as Enter-Association. 

Failed interpretation: Enteringl2 as Enter-Lisp. 

The system continues to check the other knowr. interpretations. All the rest of the 

known interpretations fail as they did in the original example. 

Since a valid conventional interpretation now exists based on the new metaphor, 

the MES is not called and the metaphorical interpretation is returned. 

Final interpretation: 

(A Invoke-Maill2 (i Invoke-Mail) 

(mail-invokedl2 (i mail-invoked) 

(A Maill2 (i Mail))) 

(mail-ir.vokerl2 (i mail-invoker) 

(A !13 (i I)))) 

Final interpretation of input: 

- 194-



1 .... 

(A How-Q13 (i How-Q) 

(topic13 (i topic) 

(A Invoke-Maill2 (i Invoke-Mail) 

(mail-invoked12 (i mail-invoked) 

(A Mail12 (i Mail))) 

(mail-invokerl2 (i mail-invoker) 

(A Il3 (i I)))))) 

Once again, this final interpretation of the original question is sent to the UC system 

for answering. 

Calling UC on input: 

(A How-Ql3 (i How-Q) 

(topic13 (i topic) 

(A Invoke-Mail12 (i Invoke-Mail) 

(mail-invoked12 (i mail-invoked) 

(A Maill2 (i Mail))) 

(mail-invokerl2 (i mail-invoker) 

(A Il3 (i I)))))) 

UC: You can enter mail by typing mail to the shell. 

The previous example was an example of a normal similarity extension inference. 

MIDAS handled a new metaphorical use of Entering based upon a previously under­

stood entering metaphor. The following example illustrates the system's ability to com­

bine evidence in the form of combined core extension and similarity extension infer­

ences. In the following processing of Example (6), MIDAS learns the meaning of 'exit 

emacs' from the known metaphor Enter-Lisp. This metaphor is connected to the input 

example by the core relationship from Entering to Exiting and the similarity relation­

ship between Lisp and Emacs. 

> (do-sentence) 

Interpreting sentence: 

How can I get out of emacs? 

Interpreting primal input. 

(A Exiting98 (i Exiting) 

(agent603 (i agent) (A I206 (i I))) 

(patient568 (i patient) 

- 195-



(A Emacs45 (i Emacs)))) 

Concreting input relations. 

Concreting patient to exited. 

Concreting agent to exiter. 

Interpreting concreted input. 

(A Exiting98 (i Exiting) 

(exiter59 (i exiter) (A I206 (i I))) 

(exited59 (i exited) (A Emacs45 (i Emacs)))) 

Failed interpretation: Exiting98 as Exiting. 

No valid interpretations. Attempting to extend existing metaphor. 

===========================•=============================== 
Entering Metaphor Extension System 

==========================-===============================~ 

Searching for related known metaphors. 

Metaphors found: Enter-Lisp Enter-Association 

Selecting metaphor Enter-Lisp to extend from. 

Once again the system selects from among the existing known metaphors. The 

Enter-Lisp metaphor is again selected because it is closest to the new example. Note 

that the Entering-Invoke-Mail metaphor, produced in the previous example, was 

removed from the knowledge base before this example was run. Had it been left in then 
it would have been selected and processed as a normal core related extension. 

(A Enter-Lisp (i Container-Metaphor Metaphor-Schema) 

(enter-lisp-res enter-res ~ lisp-invoke-result) 

(lisp-enterer enterer ~ lisp-invoker) 

(entered-lisp entered ~ lisp-invoked) 

(enter-lisp-map Entering~ Invoke-Lisp)) 

Attempting a similarity core-related metaphorical extension. 

The system has determined that, based on the shape of the connection from the input 

example to the Enter-Lisp metaphor, that this is a core-related similarity inference. Ie. 

- 196-



an example that combines a core and similarity situation. 

Extending similar core-related metaphor Enter-Lisp 

with target concept Invoke-Lisp. 

This is an intermediate extension inference. 

Applying source path: 

Exiting ~ exit-pre ~ Enclosed-State ~ enter-res* ~ Entering 

to target concept Invoke-Lisp yields target connection. 

Invoke-Lisp ~ lisp-invoke-result ~ Lisp-Active ~ lisp-uninvoke-pre* 

~ Uninvoke-Lisp 

Applying source path yields target concept Uninvoke-Lisp. 

The next step in applying a similar core related metaphor is to find the core related 

target concept via the application of source path to the target concept of the candidate­

metaphor. At this point, the system has applied the source core path relation to the target 

domain and located the target concept Uninvoke-Lisp. This concept must be processed 

in the same fashion as a normal similarity extension. 

Abstracting Uninvoke-Lisp to ancestor concept Uninvoke-Comp-Process 

producingabstract target meaning: 

(A Uninvoke-Comp-Process53 

(i Uninvoke-Comp-Process) 

(comp-process-uninvoked53 

(i comp-process-uninvoked) 

(A Emacs45 (i Emacs))) 

(comp-process-uninvoker53 

(i comp-process-uninvoker) (A I206 (i I)))) 

Concreting Uninvoke-Comp-Process53 to concept Uninvoke-Emacs. 

Yielding concept: 

(A Uninvoke-Emacs39 (i Uninvoke-Emacs) 

(emacs-uninvoker39 (i emacs-uninvoker) 

(A I206 (i I))) 

(emacs-uninvoked39 (i emacs-uninvoked) 

(A Emacs45 (i Emacs)))) 

- 197-



The concept uninvoke-Lisp is abstracted to the concept Univoke-Comp-Process 

since this is the first ancestor of the Uninvoke-lisp concept whose constraints can 

accept the input concept Emacs. At this point, the input roles are assigned and the con­

cept is concreted to the intended meaning of Univoke-Emacs. 

Creating new metaphor: 

Mapping main source concept Exiting to main target concept Uninvoke-Emacs. 

Mapping source role exiter to target role emacs-uninvoker. 

Mapping source role exited to target role emacs-uninvoked. 

(A Exiting-Uninvoke-Mail (i Exiting-Metaphor) 

(emacs-uninvoked-map exited -t emacs-uninvoked) 

(emacs-uninvoker-map exiter -t emacs-uninvoker) 

(exiting-uninvoke-emacs-map Exiting -t Uninvoke-Emacs)) 

As in the previous learning examples, the new example leads to the creation of a 

new metaphor. 

Final interpretation of input: 

(A How-Q210 (i How-Q) 

(topic209 (i topic) 

(A Uninvoke-Emacs39 (i Uninvoke-Emacs) 

(emacs-uninvoker39 (i emacs-uninvoker) 

(A I206 (i I))) 

(emacs-uninvoked39 (i emacs-uninvoked) 

(A Emacs45 (i Emacs)))))) 

Calling UC on input: 

(A How-Q210 <i How-Q) 

(topic209 <i topic) 

(A Uninvoke-Emacs39 (i Uninvoke-Emacs) 

(emacs-uninvoker39 (i emacs-uninvoker) 

(A I206 (i I))) 

(emacs-uninvoked39 (i emacs-uninvoked) 

(A Emacs45 (i Emacs)))))) 

UC: You can exit emacs by typing x c. 

The processing of Example (11) illustrates a major issue in the area of conventional 

metaphor having to do with lexicalization and learning. A basic assumption of the sys­

tem is that the user will be using domain metaphors in a normal or conventional fashion. 

- 198-



' 

Metaphors that are extremely novel or incoherent will not be understood by the system 

because there will be no known metaphor that is sufficiently close to them to be easily 

understood. There are, however, coherent metaphors that are simply not a part of con­

ventional usage. Consider the following example. 

(7) How can I kill a file? 

The use of the word kill to mean delete is a part of the UNIX lexicon when applied 

to lines of text and characters. One can 'kill a line' or 'use the kill character'. This use of 

kill does not however conventionally extend to the deletion of files. It is not normal 

UNIX language to refer to 'deleting a file' as killing. The system can however come to 

a correct interpretation of this use by a similarity extension from the 'kill a line' use to 

mean delete. The following trace illustrates this processing. 

> (do-sentence) 

Interpreting sentence: 

How can I kill a file? 

Interpreting primal input. 

(A Killing145 (i Killing) 

(agent601 (i agent) (A I204 (i I))) 

(patient566 <i patient) 

(A Text-File22 (i Text-File)))) 

Concreting input relations. 

Concreting patient to kill-victim. 

Concreting agent to killer. 

Interpreting concreted input. 

(A Killing145 (i Killing) 

(killer90 <i killer) (A I204 (i I))) 

(kill-victim90 (i kill-victim) 

(A Text-File22 <i Text-File)))) 

Failed interpretation: Killingl45 as Killing. 

Failed interpretation: Killingl45 as Kill-Delete-Line. 

Failed interpretation: Killingl45 as Kill-Sports-Defeat. 

Failed interpretation: Killingl45 as Kill-Conversation. 

No valid interpretations. Attempting to extend existing metaphor. 

- 199-



Entering Metaphor Extension System 

Searching for related known metaphors. 

Metaphors found: Kill-Delete-Line Kill-Conversation Kill-Sports-Defeat 

Selecting metaphor Kill-Delete-Line to extend from. 

(A Kill-Delete-Line (i Kill-Metaphor Metaphor-Schema) 

(killed-deleted kill-victim ~ line-deleted) 

(killer-deleter killer ~ line-deleter) 

(kill-delete Killing~ Delete-Line)) 

Attempting a similarity extension inference. 

Extending similar metaphor Kill-Delete-Line with target 

concept Delete-Line. 

Abstracting Delete-Line to ancestor concept Deleting producing 

abstract target meaning: 

(A Deleting22 <i Deleting) 

(deleted22 <i deleted) 

(A Text-File22 (i Text-File))) 

(deleter22 (i deleter) (A I204 (i I)))) 

Concreting target concept Deleting to Delete-File producing 

concreted meaning: 

(A Delete-File20 (i Delete-File) 

(file-d~leter20 <i file-deleter) 

(A I204 (i I))) 

(file-deleted20 (i file-deleted) 

(A Text-File22 (i Text-File)))) 

Creating new metaphor: 

Mapping main source concept Killing to main target concept Delete-File. 

Mapping source role kill-victim to target role file-deleted. 

Mapping source role killer to target role file-deleter. 

(A Killing-Delete-File (i Kill-Metaphor) 

(kill-victim-file-deleted-map kill-victim ~ file-deleted) 

(killer-file-deleter-map killer ~ file-deleter) 

(killing-delete-file-map Killing~ Delete-File)) 

- 200-



At this point, the system has created a new metaphor, Killing-Delete-File to 

represent the use of kill a file to mean delete. This is instantiated as a sibling Kill­

Delete-Line metaphor in the hierarchy. 

Final interpretation of input: 

(A How-Q208 (i How-Q) 

(topic207 (i topic) 

(A Delete-File20 (i Delete-File) 

(file-deleter20 (i file-deleter) 

(A I204 (i I))) 

(file-deleted20 (i file-deleted) 

(A Text-File22 (i Text-File)))))) 

Calling UC on input: 

(A How-Q208 (i How-Q) 

(topic207 (i topic) 

(A Delete-File20 (i Delete-File) 

(file-deleter20 (i file-deleter) 

(A I204 (i I))) 

(file-deleted20 (i file-deleted) 

(A Text-File22 (i Text-File)))))) 

The UC generator again uses the user's metaphorical language when generating the 

answer to this query. 

UC: You can kill a file by typing rrn filename. 

The main issue here is that while the system can and should understand this use of 

kill to mean delete, it should not become a part of its normal lexicon. In particular, the 

system should not normally describe the workings of the result of the 'rm' command as a 

killing. The problem is that a single-instance learning system has no way of distinguish­

ing a coherent metaphor that simply is not conventional from one that is both coherent 

and conventional. 

The following examples from Jacobs (1985) illustrate a metaphorical UNIX use of 

- 201 -



the concepts giving and having. 

> (do-sentence) 

Interpreting sentence: 

You have write permission. 

Interpreting primal input. 

(A Having51 (i Having) 

(agent598 (i agent) (A You39 (i You))) 

(patient563 (i patient) 

(A Write-Permission42 (i Write-Permission)))) 

Concreting input relations. 

Concreting patient to had. 

Concreting agent to haver. 

Interpreting concreted input. 

(A Having51 (i Having) 

(haver42 (i haver) (A You39 (i You))) 

(had42 (i had) 

(A Write-Permission42 (i Write-Permission)))) 

Failed interpretation: Having51 as Having. 

Failed interpretation: Having51 as Have-Idea. 

Failed interpretation: Having51 as Have-Cold. 

Valid known metaphorical interpretation. 

Applying conventional metaphor Have-Permission. 

(A Have-Permission (i Have-State Metaphor-Schema) 

(had-permission had ~ permitted) 

(haver-permitted haver ~ permittee) 

(having-permitted Having~ Permitted-State)) 

Mapping input concept Having51 to concept Write-Permitted-Statel4 

Mapping input role had42 with filler Write-Permission42 to 

target role write-action-permittedl4 

Mapping input role haver42 with filler You39 to 

target role write-perrnittedl2 

Yielding interpretation: 

- 202-



(A Write-Permitted-Statel4 (i Write-Permitted-State) 

(write-permitted12 (i write-permitted) 

(A You39 (i You))) 

(write-action-permittedl4 (i write-action-permitted) 

(A Write-Permission42 (i Write-Permission)))) 

Final interpretation of input: 

(A Write-Permitted-Statel4 <i Write-Permitted-State) 

(write-permittedl2 (i write-permitted) 

(A You39 (i You))) 

(write-action-permittedl4 (i write-action-permitted) 

(A Write-Permission42 (i Write-Permission)))) 

The following two examples illustrate direct extension inferences from the core 

have-permission metaphor. 

> (do-sentence) 

Interpreting sentence: 

You need write permission. 

Interpreting primal input. 

(A Needing30 (i Needing) 

(agent599 (i agent) (A You40 (i You))) 

(patient564 <i patient) 

(A Write-Permission43 (i Write-Permission)))) 

Concreting input relations. 

Concreting patient to needed. 

Concreting agent to needer. 

Interpreting concreted input. 

(A Needing30 (i Needing) 

(needer26 (i needer) (A You40 (i You))) 

(needed26 (i needed) 

(A Write-Permission43 (i Write-Permission)))) 

Failed interpretation: Needing30 as Needing. 

- 203-



No valid interpretations. Attempting to extend existing metaphor. 

======~=~--=-=========================================
===== 

Entering Metaphor Extension System 

=========================================================== 

Searching for related known metaphors. 

Metaphors found: Have-Permission Have-Idea Have-ColdHave-State 

Get-Grade Give-Flu 

Selecting metaphor Have-Permission to extend from. 

(A Have-Permission (i Have-State Metaphor-Schema) 

(had-permission had ~ permitted) 

(haver-permitted haver ~ permittee) 

(having-permitted Having~ Permitted-State)) 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Have-Permission 

with target concept Permitted-State. 

This is a direct extension inference. 

Applying source path: 

Needing ~ needed-state ~ Having 

to target concept Permitted-State yields target connection. 

Permitted-State ~ req-permission* ~ Required-Permission 

Applying source path yields target concept Required-Permission. 

(A Required-Permission4 

(i Required-Permission) 

(req-permittee4 (i req-permittee) 

(A You40 (i You))) 

(req-permitted-of4 (i req-permitted-of) 

(A Write-Permission43 (i Write-Permission)))) 

Creating new metaphor: 

Mapping main source concept Needing to main target concept 

- 204-



... 

Required-Permission. 

Mapping source role needer to target role req-per.mittee. 

Mapping source role needed to target role req-permitted-of. 

(A Needing-Required-Permission (i Metaphor-Schema) 

(needed-req-permitted-of-map needed ~ req-permitted-of) 

(needer-req-permittee-map needer ~ req-permittee) 

(needing-required-permission-map Needing ~ Required-Permission) ) 

Final interpretation of input: 

(A Required-Per.mission4 

(i Required-Permission) 

(req-per.mittee4 <i req-permittee) 

(A You40 (i You))) 

(req-permitted-of4 (i req-per.mitted-of) 

(A Write-Per.mission43 <i Write-Permission)))) 

> (do-sentence) 

Interpreting sentence: 

Chmod gives you write permission. 

Interpreting primal input. 

(A Giving95 (i Giving) 

(agent600 (i agent) (A Chmod6 <i Chmod))) 

(patient565 (i patient) (A You41 (i You))) 

(objectl25 (i object) 

(A Write-Per.mission44 (i Write-Permission)))) 

Concreting input relations. 

Concreting object to given. 

Concreting patient to givee. 

Concreting agent to giver . 

Interpreting concreted input. 

(A Giving95 (i Givi~1g) 
(giver54 (i giver) (A Chmod6 

(givee54 (i givee) (A You41 

(given55 (i given) 

<i Chmod))) 

(i You))) 

. 205-



(A Write-Permission44 <i Write-Permission)))) 

Failed interpretation: Giving95 as Giving. 

Failed interpretation: Giving95 as Give-Flu. 

No valid interpretations. Attempting to extend existing metaphor. 

=========================================================== 
Entering Metaphor Extension System 

=========================================================== 

Searching for related known metaphors. 

Metaphors found: Have-Permission Needing-Required-Permission Have-Idea 

Have-Cold Have-State Get-Grade Give-Flu 

Selecting metaphor Have-Permission to extend from. 

(A Have-Permission (i Have-State Metaphor-Schema) 

(had-permission had ~ permitted) 

(haver-permitted haver ~ permittee) 

(having-permitted Having~ Permitted-State)) 

Attempting a core-related metaphorical extension. 

Extending similar core-related metaphor Have-Permission 

with target concept Permitted-State. 

This is a direct extension inference. 

Applying source path: 

Giving ~ give-result ~ Having 

to target concept Permitted-State yields target connection. 

Permitted-State ~ permit-result* ~ Permit-Action 

Applying source path yields target concept Permit-Action. 

(A Permit-Action2 (i Permit-Action) 

(permit-permitter2 ci permit-permitter) 

(A Cr~od6 (j Chmod))) 

-~-



(permit-permittee2 (i permit-permittee) 

(A You41 (i You))) 

(permission-permitted2 

(i permission-permitted) 

(A Write-Permission44 (i Write-Permission)))) 

Creating new metaphor: 

Mapping main source concept Giving to main target concept Permit-Action. 

Mapping source role giver to target role permit-permitter. 

Mapping source role givee to target role permit-permittee. 

Mapping source role given to target role permission-permitted. 

(A Giving-Permit-Action (i Metaphor-Schema) 

(given-permission-permitted-map given ~ permission-permitted) 

(givee-permit-permittee-map givee ~ permit-permittee) 

(giver-permit-permitter-map giver ~ permit-permitter) 

(giving-permit-action-map Giving~ Permit-Action)) 

Final interpretation of input: 

(A Permit-Action2 (i Permit-Action) 

(permit-permitter2 (j permit-permitter) 

(A Chmod6 (j Chmod))) 

(permit-permittee2 (i permit-permittee) 

(A You41 (i You))) 

(permission-permitted2 

(i permission-permitted) 

(A Write-Permission44 <i Write-Permission)))) 

- 207-



Appendix B 

Implementation Status 

B.l Introduction 

This appendix presents some of the implementation details of MIDAS and 

KODIAK. These programs were written in Common Lisp on a Texas Instruments 

Explorer I lisp machine. 

B.2 KODIAK 

The major difference between previous implementations of KODIAK and the one 

used here is that primitive links are not explicitly represented as objects in the 

knowledge-base. In previous implementations, the basic data types were absolute, rela­

tion, aspectual, and link. All were defined using the defstruct facility. Each link object 

possessed a From and To field that specified the domain and range of the link. Absolutes, 

relations, and aspectuals contained a field that listed the incoming and outgoing links 

attached to that concept. 

There were two major problems with this technique. The resulting knowledge-base 

was much larger than necessary because of the proliferation of links, as a result re­
loading the knowledge became very time-consuming. The second problem was process­

ing speed. In order to traverse a single domain relation from the domain to the range, four 
links and five concepts had to be traversed. Operations that should have been primitive 

and fast were taking too much time and space. 

The implementation used in the current version implicitly represents links as fields 
in normal concepts. Absolutes, relations, and aspectuals are provided with the following 

fields: name, parents, ancestors, children, descendents, relations, equates, and differs. 

This design resulted in a much more compact knowledge-base that could be traversed 

and loaded much more quickly. 

The function called most frequently by MIDAS and KODIAK is called Ancestor-

- 208-



or-Eq-P. This function takes two concepts and checks if the first concept ultimately 

dominates the second concept. The original implementation of this function involved 

searching up through the hierarchy to find ancestors. This was necessitated by the fact 

that the representation only stored the immediate parents of each concept. This function 

quickly became a major bottleneck. Ancestor-or-Eq-P was subsequently augmented 

with a caching mechanism. Whenever it is first called on a concept, the full list of ances­

tors is computed and then stored in the ancestor field of that concept. Subsequent calls to 

Ancestor-or-Eq-P merely look at this field rather than searching the hierarchy. This 

effectively led to a five-fold speed-up in MIDAS's overall performance. 

The version of KODIAK used by MIDAS was also augmented with a set of tools 

to manipulate and create metaphors. The most useful user level function is called Defme­

taphor. An example of this is shown below in Figure 1. 

(defmetaphor give-cold 

(give-infect-map 

(giver-infector 

(givee-infected 

(given-infection 

(give-infect-res 

giving~ cold-infect) 

giver ~cold-infector) 

givee ~ cold-victim) 

given ~ infected-cold) 

give-result ~ cold-inf-res)) 

Figure 1: Creating a Metaphor 

Defmetaphor is used to create new metaphor-senses along with all the attendant 

metaphor-maps. In the above example, the Give-Cold metaphor is created with all its 

source target associations. The user merely specifies the name of the metaphor and its 

associations. The concretion mechanism is used to automatically classify the metaphor­

sense and all the new metaphor-maps. 

B.3 Statistics 

The size of MIDAS's knowledge-based is summarized in Figure 1. Since MIDAS 

has a learning component, the size of the knowledge-base is difficult to state definitively. 

The initial knowledge-base contained 13 metaphor-senses that were hand-coded. During 

the course of processing the examples discussed in this thesis, an additional 23 

metaphor-senses were acquired. This, of course, is not intended to represent the full set 

of metaphors derivable from the base set. 

The interpretation of sentences that contain conventional metaphors known to 

MIDAS averaged 1.4 seconds of real time (2.6 seconds for UC examples). On average, 

less than .1 seconds were spent in the initial parse phase, the rest being spent in semantic 

-209-



Concept Type 
Absolutes 
Relations 
Aspectuals 

Original KB 
Metaphor-Senses 
Metaphor-Maps 

Final KB 
Metaphor-Senses 
Metaphor-Maps 

Numbtr 
243 
415 
830 

13 
35 

36 
94 

Size of Knowledge-Base 

interpretation and UC processing. Examples involving the interpretation and acquisition 

of new metaphors averaged 7. 8 seconds. 

An important question to ask of any learning system is what effect the addition of 

the new knowledge has on the overall system performance. For MIDAS, at least as far as 

time is concerned, there are two metrics. The first is the speed-up experienced by 

MIDAS when newly learned metaphors are again encountered. There was, on average, a 

three-fold speedup in the subsequent processing of examples involving newly learned 

metaphors. The overhead costs of adding a new metaphor incurred during the processing 

of metaphors not related to the new one were negligible. In other words, the addition of 

a new metaphor does not significantly effect the time taken to process sentences where it 

is not relevant. These times are all for real time running compiled Common Lisp on a TI 

Explorer I, running Release 3.2. 

- 210-



References 

Alterman, R., Adaptive Planning. Cognitive Science 12. pp. 393-421, 1988. 

Anderson, J. R., The Architecture of Cognition. Harvard University Press, Cambridge, 

MA, 1983. 

Berwick, R. The Acquisition of Syntactic Knowledge. MIT Press, Cambridge, MA, 

1985. 

Black, M., Metaphor. In Proceedings of the Aristotlean Society, pp. 273-294, 1954. 

Black, M., Models and Metaphors. Cornell University Press, Ithaca, NY, 1962. 

Bobrow, D. and Winograd, T., An Overview of KRL: A Knowledge Representation 

Language. Cognitive Science 1, pp. 346-370, 1977. 

Brachman, R. J., and Schmolze, J. G., An Overview of the KL-ONE Knowledge 

Representation System. Cognitive Science 9, pp. 171-216, 1985. 

Braverman, M.S., and Russell, S.J., Boundaries of Operationality. In Proceedings of the 

Fifth International Conference on Machine Learning. pp. 221-234, Ann Arbor, MI, 

1988. 

Brugman, C., The Story of Over. Unpublished Masters Thesis. University of California, 

Berkeley. 1981. 

Burstein, M.H., Concept Formation by Incremental Analogical Reasoning and Debug­

ging. In Machine Learning: Volume II. Michalski, R.S., Carbonell, J.G., Mitchell, 

T.M., (eds), Morgan Kaufmann, Los Altos, CA. 1986. 

Carbonell, J.G., Metaphor: A Key to Extensible Semantic Analysis. Proceedings of the 

18th Meeting of the Association for Computational Linguistics, 1980. 

Carbonell, J. G., Invariance Hierarchies in Metaphor Interpretation. Proceedings of the 

Third Meeting of the Cognitive Science Society. Cognitive Science Society, pp. 

292-295, August 1981. 

DeJong, G.F. and Waltz, D.L., Understanding Novel Language. Computers and 

Mathematics with Applications 9. 1983. 

Falkenhainer, B., Forbus, K. D., and Gentner, D. The Structure Mapping Engine. In 

Proceedings of MAI-86. Philadelphia, PA. 1986. 

Fass, D. and Wilks, Y., Preference Semantics, Ill-Fonnedness and Metaphor. In Ameri­

can Journal of Computational Linguistics 9, pp. 178-187, 1983 . 

. 211 . 



Fass, D., Collative Semantics: A Description of the Meta5 Program. Memoranda in Cog­

nitive and Computer Science. Report No. MCCS-86-23, New Mexico State Univer­

sity, 1986. 

Fass, D., Collative Semantics: A Semantics for Natural Language Processing. PhD 

Thesis, Report No. MCCS-88-118, Computing Research Laboratory, New Mexico 

State University, NM, 1988. 

Fillmore, C. Frame Semantics. In Linguistics in the Morning Calm Linguistics Society of 

Korea, Hanshin, Korea, 1982. 

Gardner, H., Metaphors and Modalities: How Children Project Polar Adjectives onto 

Diverse Domains. Child Development, 45, pp. 84-91. 1974. 

Gentner, D., Some Interesting Differences Between Verbs and Nouns. Cognition and 

Brain Theory, 4, pp. 161-178, 1981. 

Gentner, D., Structure Mapping: A Theoretical Framework for Analogy. Cognitive Sci­

ence 7 pp. 155-170. 1983. 

Gentner, D. and Stuart, P., Metaphor as Structure Mapping: What Develops. BBN 

Technical Report No. 5479, Cambridge, MA 1983. 

Gentner, D., Falkenhainer, B., Skorstad, J., Viewing Metaphor as Analogy. In Analogical 

Reasoning. Helman, D.H., (ed), Kluwer Academic Publishers, London, 1988. 

Gentner.D. and France, I.M., The Verb Mutability Effect: Studies of the Combinatorial 

Semantics of Nouns and Verbs. In Lexical Ambiguity Resolution. Small, S., Cot­

trell, G., Tanenhaus, M., (eds), Morgan Kaufmann Publishers, San Mateo, CA, 

1988. 

Granger, R.H., FOUL-UP: A Program That Figures Out Meanings of Words from Con­

text. Proceedings of the Fifth International Joint Conference on Artificial Intelli­

gence. Cambridge, MA, 1977. 

Greiner, R. Learning by Understanding Analogies. PhD Thesis, Stanford University, 

Report No. STAN-CS-85-1071, 1985. 

Greiner, R., Abstraction-Based Analogical Inference. In Analogical Reasoning. Helman, 

D.H., (ed), Kluwer Academic Publishers, London, 1988. 

Helman, D.H., (ed), Analogical Reasoning, Kluwer Academic Publishers, Boston, 1988. 

Hammond, K., Case-Based Planning: An Integrated Theory of Planning, Learning, and 

Memory. PhD. Thesis, Yale University, Department of Computer Science Report 

No. 488, 1986. 

Herskovits, A., Language and Spatial Cognition. Cambridge University Press, Cam­

bridge, 1986. 

Hirst, G., Semantic Interpretation and the Resolution of Ambiguity. Cambridge Univer­

sity Press, Cambridge. 1987. 

Hobbs, J., Metaphor, Metaphor Schemata, and Selective Inferencing. SRI Technical Note 

204, December 1979. 

Indurkhya, B., Approximate Semantic Transference: A Computational Theory of Meta­

phors and Analogy. Cognitive Science, II. pp. 445-480, 1987. 

- 212-



Jackendoff, R., Semantics and Cognition. MIT Press, Cambridge, MA, 1983. 

Jacobs, P.,S., A Knowledge-Based Approach to Language Production. PhD. Thesis. 

University of California, Berkeley, Report No. UCB/CSD 86/254, August 1985. 

Jacobs, P.,S., Knowledge-Intensive Natural Language Generation, Artificial Intelligence, 

33. pp. 325-378, 1987. 

Johnson, M. (Ed)., Philosophical Perspectives on Metaphor. University of Minnesota 

Press, Minneapolis, MN., 1981. 

Katz, J. and Fodor, J.A., The Structure of a Semantic Theory. Language, 39, pp. 170-

230, 1963. 

Lakoff, G. and Johnson, M., Metaphors We Live By. University of Chicago, 1980. 

Lakoff, G., Women, Fire and Dangerous Things. University of Chicago, Chicago, IL, 

1986. 

Lakoff, G. and Turner, M., More Than Cool Reason. University of Chicago Press, Chi­

cago, IL, In Press. 

Langacker, R. Foundations of Cognitive Grammar. Stanford University Press, Stanford, 

CA, 1987. 

Lindner, S., A Lexica-Semantic Analysis of Verb-Particle Constructions with "Up". PhD. 

Thesis. University of California, San Diego, 1981. 

Luria, M., Knowledge Intensive Planning. PhD. Thesis. University of California, Berke­

ley, Report No. UCB/CSD 88/433, 1988. 

Martin, J., Knowledge Acquisition through Natural Language Dialogue. In Proceedings 

of the 2nd Conference on Anificial Intelligence Applications. Miami, Aorida, 

December 1985. 

Martin, J., Views From a Kill. In Proceedings of the 8th National Conference of the Cog­

nitive Science Society. Amherst, MA, August 1986. 

Martin, J., Representing and Acquiring Knowledge About Metaphors. Proceedings of 

the 3rd Workshop on Theoretical Issues in Conceptual Information Processing. 

Philadelphia, PA, 1986. 

Martin, J., Understanding New Metaphors. Proceedings of IJCAI-87. Milan, Italy, 1987. 

Martin, J., Representing Regularities in the Metaphoric Lexicon. Proceedings of the 12th 

International Conference on Computational Linguistics. Budapest, Hungary, 1988. 

Norvig, P., Categorizing the Senses of Take. Proceedings of the 3rd Workshop on 

Theoretical Issues in Conceptual Information Processing. Philadelphia, PA, 1986. 

Norvig, P., A Unified Theory of Inference For Text Understanding. PhD. Thesis, Univer­

sity of California, Berkeley, Report No. UCB/CSD 87/339, 1987. 

Ortony, A. (Ed)., Metaphor and Thought Cambridge University Press, 1979. 

Prieditis, A., (ed), Analogica: Processdings of the First Workshop on Analogical Reason­

ing, Morgan Kaufmann, Los Altos, Ca, 1987. 

Pinker, S., Language Learnabiliry and Language Development. Harvard University 

Press, Cambridge, MA, 1984. 

- 213-



Reddy, M., The Conduit Metaphor. In Metaphor and Thought. Ortony, A. (Ed). pp. 

284-324, Cambridge University Press, Cambridge, 1979. 

Richards, I.,A., The Philosophy of Rhetoric. Oxford University Press, Oxford, 1936. 

Riesbeck, C., Realistic Language Comprehension. In, Strategies for Natural Language 

Processing. Lehnert, W. and Ringle, M. (Eds), Lawrence Erlbaum Associates, 

Hillsdale, NJ, 1982. 

Russell, S.W., Computer Understanding of Metaphorically Used Verbs. American Jour­

nal of Computational Linguistics. Microfiche 44, 197 6. 

Schank, R. and Abelson, R., Scripts, Plans, Goals and Understanding Lawrence Erlbaum 

Associates, Hillsdale, NJ, 1977. 

Selfridge, M., A Computer Model of Child Language Acquisition. In Proceedings of the 

Seventh International Joint Conference on Artificial Intelligence. pp. 92-96, Van­

couver, Canada, 1981. 

Small, S. and Rieger, C., Parsing and Comprehending with Word Experts. In Strategies 

for Natural Language Processing. Lehnert, W. and Ringle, M. (Eds), Lawrence 

Erlbaum Associates, Hillsdale, NJ, 1982. 

Weiner, E. J., A Knowledge Representation Approach to Understanding Metaphors. 

Computational Linguistics 10. 1984. 

Wilensky, R., KODIAK: A Knowledge Representation Language. In Proceedings of the 

6th National Conference of the Cognitive Science Society. Boulder, CO, June 1984. 

Wilensky, R., Arens, Y. and Chin, D., Talking to Unix in English: An overview of UC. 

In Comm. ACM 27. pp. 574-593, June 1984. 

Wilensky, R., Some Problems and Proposals for Knowledge Representation. University 

of California, Berkeley, Computer Science Division Report No. UCB/CSD 86/294, 

May 1986. 

Wilensky, R. et al, UC: A Progress Report. University of California, Berkeley, Com­

puter Science Division Report No. UCB/CSD 87/303, 1986. 

Wilks, Y., Preference Semantics. In The Formal Semantics of Natural Language Keenan 

(ed), Cambridge, 1975. 

Wilks, Y., Making Preferences More Active. Artificial Intelligence 11. 1978. 

Winston P., Learning by Creating Transfer Frames. Artificial Intelligence 10. 1978. 

Winston P., Learning and Reasoning by Analogy. Comm. ACM 23. pp. 689-703, 

December 1980. 

Zernik, U., Strategies in Language Acquisition: Learning Phrases from Examples in 

Context. PhD. Thesis, University of California, Los Angeles, Report No. UCLA­

AI-87-1, 1987. 

- 214-


